Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.550
Filter
1.
Food Res Int ; 188: 114441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823858

ABSTRACT

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Subject(s)
Aflatoxins , Decontamination , Food Contamination , Oryza , Oryza/chemistry , Oryza/microbiology , Aflatoxins/analysis , Food Contamination/analysis , Decontamination/methods , Humans , Aspergillus/metabolism , Food Handling/methods , Food Microbiology
2.
Sci Rep ; 14(1): 10307, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705878

ABSTRACT

This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.


Subject(s)
Food Preservation , Food Preservatives , Pomegranate , Powders , Food Preservatives/pharmacology , Food Preservatives/chemistry , Pomegranate/chemistry , Food Preservation/methods , Penicillium/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Aspergillus/drug effects , Aspergillus/growth & development , Fruit/chemistry , Food Storage/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Food Res Int ; 183: 114214, 2024 May.
Article in English | MEDLINE | ID: mdl-38760141

ABSTRACT

Ochratoxin A (OTA) is a toxin produced by several Aspergillus species, mainly those belonging to section Circumdati and section Nigri. The presence of OTA in cheese has been reported recently in cave cheese in Italy. As artisanal cheese production in Brazil has increased, the aim of this study was to investigate the presence of ochratoxin A and related fungi in artisanal cheese consumed in Brazil. A total of 130 samples of artisanal cheeses with natural moldy rind at different periods of maturation were collected. Of this total, 79 samples were collected from 6 producers from Canastra region in the state of Minas Gerais, since this is the largest artisanal cheese producer region; 13 samples from one producer in the Amparo region in the state of São Paulo and 36 samples from markets located in these 2 states. Aspergillus section Circumdati occurred in samples of three producers and some samples from the markets. A. section Circumdati colony counts varied from 102 to 106 CFU/g. Molecular analysis revealed Aspergillus westerdijkiae (67 %) as the most frequent species, followed by Aspergillus ostianus (22 %), and Aspergillus steynii (11 %). All of these isolates of A. section Circumdati were able to produce OTA in Yeast Extract Sucrose Agar (YESA) at 25 °C/7 days. OTA was found in 22 % of the artisanal cheese samples, ranging from 1.0 to above 1000 µg/kg, but only five samples had OTA higher than 1000 µg/kg. These findings emphasize the significance of ongoing monitoring and quality control in the artisanal cheese production process to minimize potential health risks linked to OTA contamination.


Subject(s)
Aspergillus , Cheese , Food Contamination , Food Microbiology , Ochratoxins , Ochratoxins/biosynthesis , Ochratoxins/analysis , Cheese/microbiology , Cheese/analysis , Brazil , Aspergillus/metabolism , Food Contamination/analysis , Colony Count, Microbial
4.
Microb Cell Fact ; 23(1): 134, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724934

ABSTRACT

BACKGROUND: Lovastatin has widespread applications thanks to its multiple pharmacological effects. Fermentation by filamentous fungi represents the major way of lovastatin production. However, the current lovastatin productivity by fungal fermentation is limited and needs to be improved. RESULTS: In this study, the lovastatin-producing strains of Aspergillus terreus from marine environment were screened, and their lovastatin productions were further improved by genetic engineering. Five strains of A. terreus were isolated from various marine environments. Their secondary metabolites were profiled by metabolomics analysis using Ultra Performance Liquid Chromatography-Mass spectrometry (UPLC-MS) with Global Natural Products Social Molecular Networking (GNPS), revealing that the production of secondary metabolites was variable among different strains. Remarkably, the strain of A. terreus MJ106 could principally biosynthesize the target drug lovastatin, which was confirmed by High Performance Liquid Chromatography (HPLC) and gene expression analysis. By one-factor experiment, lactose was found to be the best carbon source for A. terreus MJ106 to produce lovastatin. To improve the lovastatin titer in A. terreus MJ106, genetic engineering was applied to this strain. Firstly, a series of strong promoters was identified by transcriptomic and green fluorescent protein reporter analysis. Then, three selected strong promoters were used to overexpress the transcription factor gene lovE encoding the major transactivator for lov gene cluster expression. The results revealed that compared to A. terreus MJ106, all lovE over-expression mutants exhibited significantly more production of lovastatin and higher gene expression. One of them, LovE-b19, showed the highest lovastatin productivity at a titer of 1512 mg/L, which represents the highest production level reported in A. terreus. CONCLUSION: Our data suggested that combination of strain screen and genetic engineering represents a powerful tool for improving the productivity of fungal secondary metabolites, which could be adopted for large-scale production of lovastatin in marine-derived A. terreus.


Subject(s)
Aspergillus , Fermentation , Genetic Engineering , Lovastatin , Lovastatin/biosynthesis , Lovastatin/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Aquatic Organisms/metabolism , Aquatic Organisms/genetics
5.
Mycoses ; 67(5): e13747, 2024 May.
Article in English | MEDLINE | ID: mdl-38782741

ABSTRACT

BACKGROUND: Chronic pulmonary aspergillosis (CPA) is known to complicate patients with post-tubercular lung disease. However, some evidence suggests that CPA might co-exist in patients with newly-diagnosed pulmonary tuberculosis (P.TB) at diagnosis and also develop during therapy. The objective of this study was to confirm the presence of CPA in newly diagnosed P.TB at baseline and at the end-of-TB-therapy. MATERIALS AND METHODS: This prospective longitudinal study included newly diagnosed P.TB patients, followed up at third month and end-of-TB-therapy with symptom assessment, anti-Aspergillus IgG antibody and imaging of chest for diagnosing CPA. RESULTS: We recruited 255 patients at baseline out of which 158 (62%) completed their follow-up. Anti-Aspergillus IgG was positive in 11.1% at baseline and 27.8% at end-of-TB-therapy. Overall, proven CPA was diagnosed in 7% at baseline and 14.5% at the end-of-TB-therapy. Around 6% patients had evidence of aspergilloma in CT chest at the end-of-TB-therapy. CONCLUSIONS: CPA can be present in newly diagnosed P.TB patients at diagnosis and also develop during anti-tubercular treatment. Patients with persistent symptoms or developing new symptoms during treatment for P.TB should be evaluated for CPA. Whether patients with concomitant P.TB and CPA, while receiving antitubercular therapy, need additional antifungal therapy, needs to be evaluated in future studies.


Subject(s)
Pulmonary Aspergillosis , Tuberculosis, Pulmonary , Humans , Male , Female , Pulmonary Aspergillosis/epidemiology , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/diagnosis , Middle Aged , Prospective Studies , Adult , Longitudinal Studies , Incidence , Aged , Antibodies, Fungal/blood , Chronic Disease , Follow-Up Studies , Immunoglobulin G/blood , Antitubercular Agents/therapeutic use , Aspergillus/isolation & purification , Aspergillus/immunology , Young Adult
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691444

ABSTRACT

Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.


Subject(s)
Arachis , Fruit , Microbiota , Plant Diseases , Plant Roots , RNA, Ribosomal, 16S , Soil Microbiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Arachis/microbiology , Aspergillus/genetics , Aspergillus/isolation & purification , Bacillus/genetics , Bacillus/isolation & purification , Plant Growth Regulators/metabolism , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
7.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38749678

ABSTRACT

AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.


Subject(s)
Aspergillus , Culture Media , Plasma Gases , Aspergillus/growth & development , Aspergillus/drug effects , Plasma Gases/pharmacology , Models, Biological , Temperature , Agar
8.
Sci Rep ; 14(1): 11482, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769352

ABSTRACT

Presented paper deals with a novel application of the (nonlinear) logistic equation to model an elimination of microscopic filaments types of fungi-molds from affected materials via different external inactivation techniques. It is shown that if the inactivation rate of the external source is greater than the maximum natural growth rate of mycelium, the mold colony becomes destroyed after a finite time. Otherwise, the mycelium may survive the external attack only at a sufficiently large initial concentration of the inoculum. Theoretically determined growth curves are compared with the experimental data for Aspergillus brasiliensis mold inactivated by using both cold atmospheric plasma (CAP) and UV-germicidal lamp. Model presented in the article may be applied also to other classes of microorganisms (e.g. bacteria).


Subject(s)
Aspergillus , Aspergillus/growth & development , Aspergillus/physiology , Fungi , Plasma Gases/pharmacology , Ultraviolet Rays , Models, Biological , Mycelium/growth & development
9.
Microb Pathog ; 191: 106659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701959

ABSTRACT

There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.


Subject(s)
Antifungal Agents , Chitosan , Fusarium , Nanoparticles , Plant Diseases , Plants, Genetically Modified , Thionins , Chitosan/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Diseases/genetics , Fusarium/drug effects , Fusarium/genetics , Plants, Genetically Modified/genetics , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Thionins/genetics , Thionins/metabolism , Aspergillus/genetics , Aspergillus/drug effects , Disease Resistance/genetics , Trees/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732010

ABSTRACT

L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have been adopted, such as searching for new microorganisms that produce the enzyme and applying protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with insights that can drive strategies to improve enzyme production.


Subject(s)
Asparaginase , Computer Simulation , Penicillium , Asparaginase/chemistry , Asparaginase/immunology , Asparaginase/metabolism , Penicillium/immunology , Penicillium/enzymology , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/immunology , Fungal Proteins/metabolism , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Humans , Aspergillus/immunology , Aspergillus/enzymology , Escherichia coli/genetics , Dickeya chrysanthemi/enzymology , Dickeya chrysanthemi/immunology , Models, Molecular
11.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732045

ABSTRACT

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Subject(s)
Galactose , Galactose/analogs & derivatives , Galactose/metabolism , Galactose/chemistry , Aspergillus/metabolism , Aspergillus/genetics , Lectins/metabolism , Lectins/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Mannans/chemistry , Animals , Serum Albumin, Bovine/chemistry
12.
Nat Commun ; 15(1): 4261, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769341

ABSTRACT

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Subject(s)
Antifungal Agents , Aspergillosis , Aspergillus , Ergosterol , Fungal Proteins , Methyltransferases , Triazoles , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Antifungal Agents/pharmacology , Aspergillus/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Mice , Aspergillosis/microbiology , Aspergillosis/drug therapy , Ergosterol/metabolism , Ergosterol/biosynthesis , Triazoles/pharmacology , Gene Expression Regulation, Fungal , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Hyphae/drug effects , Hyphae/growth & development , Hyphae/genetics , Hyphae/metabolism , Female , Microbial Sensitivity Tests , Virulence/genetics
13.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809353

ABSTRACT

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Subject(s)
Oryza , Starch , Zea mays , Oryza/chemistry , Zea mays/chemistry , Starch/metabolism , Aspergillus/metabolism , Aspergillus flavus/metabolism , Aflatoxin B1/biosynthesis , Aflatoxin B1/metabolism , Sterigmatocystin/biosynthesis , Sterigmatocystin/metabolism , Microscopy, Electron, Scanning , Particle Size , Mycotoxins/metabolism , Mycotoxins/biosynthesis , Glass
14.
BMC Vet Res ; 20(1): 205, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760749

ABSTRACT

BACKGROUND: Gut microbes play a significant role in digestion, developing immunity, and intestinal health. Therefore, direct-fed microbials are used to modify gut microbiota, maintain a healthy digestive system, enhance immunity, and promote the broilers' performance. In addition, it has a role in improving the utilization of unconventional feed ingredients (olive pulp, OP). This study provides the potential role of Aspergillus awamori in enhancing gut microbial content, nutrient utilization, growth performance, and antioxidative status in heat-stressed broiler chickens fed diets containing olive pulp. METHODS: Three hundred chicks (Ross 308; one day old) were divided into four treatment groups (75 chick/ group) randomly, as follows; CON: chicks fed a basal diet based on corn and soybean meal, OP10: chicks fed a diet containing 10% OP, OA1: chicks fed a diet containing OP with A. awamori at 100 mg per kg, OA2: chicks fed a diet containing OP with A. awamori at 200 mg per kg. RESULTS: Adding A. awamori to the broiler diet that contains OP had a positive effect on productive performance via enhancing nutrition digestibility, body weight gain, feed conversion ratio, and carcass characteristics. A. awamori supplementation had a positive impact on immune responses by increasing serum immunoglobulin G and the relative weight of bursa of Fabricius (P < 0.05) compared to the other groups. Chickens fed A. awamori showed a noticeable improvement in the oxidative status through the increase in the level of serum superoxide dismutase, and glutathione peroxidase, and the decrease in the level of malondialdehyde. Feeding A. awamori also modified the intestinal microbial content by increasing the population of Lactobacillus (P < 0.05). CONCLUSIONS: Our study indicated that adding 200 mg A. awamori reduced the negative effect of heat stress by modifying the microbial content of the intestine, immune response, and enhancing feed utilization, thus improving broiler performance, as well as, improving the nutritional value of the olive pulp. Therefore, adding A. awamori to the OP diet can be effectively used in heat-stressed broiler diets.


Subject(s)
Animal Feed , Antioxidants , Aspergillus , Chickens , Diet , Digestion , Gastrointestinal Microbiome , Olea , Animals , Chickens/growth & development , Chickens/immunology , Animal Feed/analysis , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Digestion/drug effects , Olea/chemistry , Dietary Supplements , Animal Nutritional Physiological Phenomena , Hot Temperature , Male , Heat-Shock Response/drug effects
15.
Mycopathologia ; 189(3): 44, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734862

ABSTRACT

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Subject(s)
Antifungal Agents , Aspergillus , Invasive Pulmonary Aspergillosis , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Voriconazole , Humans , Male , Middle Aged , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aspergillus/isolation & purification , Aspergillus/genetics , Aspergillus/classification , Aspergillus/drug effects , Bronchoalveolar Lavage Fluid/microbiology , Cluster Analysis , DNA, Fungal/genetics , DNA, Fungal/chemistry , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/diagnosis , Itraconazole/pharmacology , Microscopy , Tomography, X-Ray Computed , Treatment Outcome , Tubulin/genetics , Voriconazole/therapeutic use , Voriconazole/pharmacology
16.
Article in Chinese | MEDLINE | ID: mdl-38811177

ABSTRACT

Objective: By conducting a retrospective analysis of the clinical data of 14 patients diagnosed with invasive fungal rhinosinusitis (IFRS) confirmed by metagenomics next generation sequencing (mNGS) technology, we aim to explore the rapid diagnosis value of mNGS in IFRS. Methods: The clinical data of 14 IFRS patients admitted to TianJin First Central Hospital were retrospectively analyzed from February 2021 to October 2023. The study cohort comprised 8 males and 6 females, with ages ranging from 14 to 77 years. All patients were diagnosed as IFRS by performing mNGS sequencing technology of nasal sinus lesion biopsy specimens. Clinical data such as laboratory examination, imaging examination, histopathological examination results, treatment plan and prognosis were summarized and analyzed. Results: All 14 patients were diagnosed as IFRS, with mNGS detecting pathogens such as Rhizopus (7 cases), Aspergillus (5 cases), Trichoderma (1 case), and Scedosporium apiospermum (1 case). Follow-up evaluations were conducted for a period ranging from 2 months to 2 years post-treatment. At the end of follow-up, 11 out of 14 IFRS patients achieved a complete cure with no signs of recurrence, while the symptoms of the remaining 3 patients significantly improved with comprehensive treatment. Conclusion: mNGS emerges as a highly effective diagnostic tool for IFRS, providing valuable microbiological evidence for clinical diagnosis and demonstrating promising clinical utility.


Subject(s)
Sinusitis , Humans , Male , Female , Sinusitis/microbiology , Sinusitis/diagnosis , Retrospective Studies , Middle Aged , Aged , Adolescent , Adult , Young Adult , Metagenomics/methods , High-Throughput Nucleotide Sequencing , Mycoses/diagnosis , Mycoses/microbiology , Aspergillus/isolation & purification , Rhinitis/diagnosis , Rhinitis/microbiology , Rhizopus/isolation & purification , Scedosporium/isolation & purification
17.
Org Biomol Chem ; 22(20): 4179-4189, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716654

ABSTRACT

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Subject(s)
Aspergillus , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Polyketides , alpha-Glucosidases , Aspergillus/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , PC12 Cells , Animals , Rats , alpha-Glucosidases/metabolism , Cell Survival/drug effects , Molecular Structure
18.
J Microbiol Biotechnol ; 34(5): 1017-1028, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803105

ABSTRACT

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of ß-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 µg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.


Subject(s)
Fermentation , Lignin , Olea , Lignin/metabolism , Olea/microbiology , Aspergillus/enzymology , Aspergillus/metabolism , Cellulase/metabolism , Cellulase/biosynthesis , Laccase/metabolism , Laccase/biosynthesis , Penicillium/enzymology , Penicillium/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/biosynthesis , Fusarium/enzymology , Fusarium/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Fungi/enzymology , Fungi/metabolism , Morocco , Fungal Proteins/metabolism
19.
J Agric Food Chem ; 72(15): 8415-8422, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573226

ABSTRACT

Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.


Subject(s)
Aspergillus , Cellulase , Pyrus , Pyrus/genetics , Cellulase/genetics , Virulence , Fruit/genetics , Fungal Proteins/genetics
20.
Food Microbiol ; 121: 104523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637085

ABSTRACT

This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).


Subject(s)
Aspergillus , Plasma Gases , Ziziphus , Aspergillus niger , Plasma Gases/pharmacology , Disinfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...