Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673783

ABSTRACT

The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from Artemisia annua L.-sweet wormwood), steviol glycosides (an intense sweetener from Stevia rebaudiana Bert.-stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from Echinacea purpurea (L.) Moench-echinacea and Cichorium intybus L.-chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from Arnica montana L.-mountain arnica), parthenolide ("medieval aspirin" from Tanacetum parthenium (L.) Sch.Bip.-feverfew), and silymarin (liver-protective medicine from Silybum marianum (L.) Gaertn.-milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments.


Subject(s)
Asteraceae , Secondary Metabolism , Asteraceae/metabolism , Asteraceae/growth & development , Biomass , Plants, Medicinal/metabolism , Plants, Medicinal/growth & development
2.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163082

ABSTRACT

Gynura bicolor (Roxb. ex Willd.) DC. (G. bicolor) is a functional vegetable rich in iron (Fe) and widely grown in Asia (e.g., Japan and China). Because most Fe in the soil exists in the form of insoluble oxides or hydroxides, it is difficult for plants to obtain Fe from the soil. A comparative metabolomic and transcriptome study was carried out to investigate the effect of Fe deficiency on metabolite synthesis and gene expression in young and mature leaves of G. bicolor. Fe deficiency caused chlorosis and decreased the chlorophyll content in young leaves. The metabolomic results for young leaves showed that l-glutamate and 4-hydroxybutanoic acid lactone significantly increased and decreased, respectively. The transcriptome results showed that the expression levels of genes involved in ferric reduction oxidase 7 and 14-kDa proline-rich protein DC2.15-like were significantly upregulated and downregulated, respectively. However, Fe deficiency had little effect on mature leaves.


Subject(s)
Asteraceae/growth & development , Gene Expression Regulation, Developmental , Iron/metabolism , Metabolome , Phytochemicals/metabolism , Plant Proteins/metabolism , Transcriptome , Asteraceae/genetics , Asteraceae/metabolism , Gene Expression Regulation, Plant , Nutrients/analysis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Necrosis and Chlorosis/statistics & numerical data , Plant Proteins/genetics
3.
Plant Sci ; 313: 111067, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763859

ABSTRACT

Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.


Subject(s)
Asteraceae/growth & development , Asteraceae/genetics , Asteraceae/parasitology , Genetic Variation , Plant Defense Against Herbivory/genetics , Pyrrolizidine Alkaloids/metabolism , Secondary Metabolism/genetics , Clone Cells , Genotype , Photoperiod , Seasons , Temperature
4.
Sci Rep ; 11(1): 21610, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732788

ABSTRACT

The drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis. Despite having higher rubber content, most rubber biosynthesis related genes were down-regulated in drought-stressed guayule, compared to well-irrigated plants, suggesting post-transcriptional effects may regulate drought-induced rubber accumulation. On the other hand, terpene resin biosynthesis genes were unevenly affected by water stress, implying unique environmental influences over transcriptional control of different terpene compounds or classes. Finally, drought induced expression of fructan catabolism genes in guayule and significantly suppressed these fructan biosynthesis genes. It appears then, that in guayule cultivation, irrigation levels might be calibrated in such a regime to enable tunable accumulation of rubber, resin and fructan.


Subject(s)
Asteraceae/metabolism , Carbohydrates/biosynthesis , Droughts , Plant Proteins/metabolism , Resins, Plant/metabolism , Rubber/metabolism , Transcriptome , Adaptation, Physiological , Asteraceae/genetics , Asteraceae/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , RNA-Seq
5.
PLoS One ; 16(10): e0258467, 2021.
Article in English | MEDLINE | ID: mdl-34644364

ABSTRACT

More than 60% of the flora of the Galapagos Islands is introduced and some of these species have become invasive, severely altering ecosystems. An example of an affected ecosystem is the Scalesia forest, originally dominated by the endemic giant daisy tree Scalesia pedunculata (Asteraceae). The remnant patches of this unique forest are increasingly being invaded by introduced plants, mainly by Rubus niveus (blackberry, Rosaceae). To help large-scale restoration of this ecologically important forest, we seek to better understand the natural regeneration of S. pedunculata after invasive plant control. We monitored naturally recruited S. pedunculata saplings and young trees over five years in an area where invasive plant species are continuously being removed by manual means. We measured survival, height and growth of S. pedunculata saplings and young trees along permanent transects. Percent cover of surrounding plant species and of canopy shade directly above each S. pedunculata individual were determined, as well as distance to the next mature S. pedunculata tree. We identified potential factors influencing initial sapling survival and growth by applying generalized linear models. Results showed a rapid growth of saplings and young trees of up to 0.45 cm per day and a high mortality rate, as is typical for pioneer species like S. pedunculata. Sapling survival, growth and mortality seemed to be influenced by light availability, surrounding vegetation and distance to the next adult S. pedunculata tree. We concluded that natural regeneration of S. pedunculata was high only five months after the last herbicide application but that 95% of these recruits had died over the 5-year period. Further studies are needed to corroborate whether the number of surviving trees is sufficient to replace the aging adult trees and this way maintain remnants of the Scalesia forest. Urgent action is needed to help improve future restoration strategies to prevent further degradation of this rapidly shrinking threatened forest ecosystem.


Subject(s)
Asteraceae/growth & development , Conservation of Natural Resources , Forests , Ecuador , Introduced Species , Rosaceae/growth & development , Weed Control
6.
Sci Rep ; 11(1): 19062, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561510

ABSTRACT

Metalliferous soils can selectively shape plant species' physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth. Our investigation explored the capacity of natural metal accumulation in a tropical tree species, Eremanthus erythropappus (Asteraceae) and the effects of such bioaccumulation on plant responses to herbivory. Seedlings of E. erythropappus were grown in a glasshouse on soils that represented a metal concentration gradient (Al, Cu, Fe, Mn and Zn), and then the exposed plants were fed to the herbivores in a natural habitat. The effect of herbivory on plant growth was significantly mediated by foliar metal ion concentrations. The results suggest that herbivory effects on these plants change from negative to positive depending on soil metal concentration. Hence, these results provide quantitative evidence for a previously unsuspected interaction between herbivory and metal bioaccumulation on plant growth.


Subject(s)
Asteraceae/metabolism , Herbivory , Metals/metabolism , Soil Pollutants/metabolism , Asteraceae/growth & development , Models, Chemical
7.
Cells ; 10(8)2021 07 24.
Article in English | MEDLINE | ID: mdl-34440649

ABSTRACT

Arabinogalactan proteins (AGPs) are a class of heavily glycosylated proteins occurring as a structural element of the cell wall-plasma membrane continuum. The features of AGPs described earlier suggest that the proteins may be implicated in plant adaptation to stress conditions in important developmental phases during the plant reproduction process. In this paper, the microscopic and immunocytochemical studies conducted using specific antibodies (JIM13, JIM15, MAC207) recognizing the carbohydrate chains of AGPs showed significant changes in the AGP distribution in female and male reproductive structures during the first stages of Bellis perennis development. In typical conditions, AGPs are characterized by a specific persistent spatio-temporal pattern of distribution. AGP epitopes are visible in the cell walls of somatic cells and in the megasporocyte walls, megaspores, and embryo sac at every stage of formation. During development in stress conditions, the AGP localization is altered, and AGPs entirely disappear in the embryo sac wall. In the case of male development, AGPs are present in the tapetum, microsporocytes, and microspores in normal conditions. In response to development at lower temperature, AGPs are localized in the common wall of microspores and in mature pollen grains. Additionally, they are accumulated in remnants of tapetum cells.


Subject(s)
Asteraceae/metabolism , Cold Temperature , Galactans/metabolism , Gametogenesis, Plant , Mucoproteins/metabolism , Ovule/metabolism , Protein Processing, Post-Translational , Asteraceae/embryology , Asteraceae/growth & development , Glycosylation , Immunohistochemistry , Microscopy, Confocal , Ovule/embryology , Ovule/growth & development , Plant Proteins/metabolism , Time Factors
8.
Sci Rep ; 11(1): 14166, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238955

ABSTRACT

Short vase life, capitulum wilting, neck bending, and postharvest chilling injury (CI) are major disorders have negative impact on quality and marketing of gerbera cut flowers. Low storage temperatures prolonging the vase life, but on the other hand leads serious CI which decreases the quality and consumer preferences. Spermine (SPER) and γ-aminobutyric acid (GABA) were identified as anti-aging factors delay the senescence and elevate the chilling tolerance in many species. Greenhouse-grown gerbera cv. 'Stanza' sprayed with 2 mM SPER and 1 mM GABA twice (2 T) or thrice (3 T). Cut flowers were stored at 1.5 °C and 8 °C postharvest to study the effects of GABA and SPER on senescence and CI. Vase life, CI and quality of cut flowers were improved by GABA and SPER treatments. No CI was observed in GABA-treated flowers at 1.5 °C; while, flowers sprayed with water showed severe CI. GABA treatments efficiently prolonged the vase life for 6-7 days more than the control (15 days). GABA and SPER increased the fresh weight, solution uptake, protein and proline contents, catalase, peroxidase, and superoxide dismutase activities, while decreased the electrolyte leakage, H2O2, and malondialdehyde contents, polyphenol oxidase, lipoxygenase, and phospholipase D activities. GABA and SPER significantly prolonged the vase life and prevented degradation of proteins and chilling damage and increased capacity of detoxifying and scavenging of H2O2 and reactive oxygen species (ROS), led to alleviate the negative consequences of the senescence and CI.


Subject(s)
Asteraceae/growth & development , Cryopreservation , Flowers/physiology , Spermine/pharmacology , gamma-Aminobutyric Acid/pharmacology , Antioxidants/metabolism , Asteraceae/drug effects , Biomass , Catalase/metabolism , Catechol Oxidase/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Electrolytes/metabolism , Flowers/drug effects , Hydrogen Peroxide/metabolism , Lipoxygenase/metabolism , Malondialdehyde/metabolism , Models, Biological , Peroxidase/metabolism , Phospholipase D/metabolism , Plant Proteins/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism
9.
PLoS One ; 16(6): e0253934, 2021.
Article in English | MEDLINE | ID: mdl-34191837

ABSTRACT

Soliva sessilis is a troublesome annual weed species in New Zealand turfgrass. This weed has been controlled selectively in New Zealand turfgrass for many years using pyridine herbicides such as clopyralid. However, in some golf courses, the continuous application of pyridine herbicides has resulted in the selection of S. sessilis populations that are resistant to these herbicides. This study focuses on a clopyralid-resistant population of S. sessilis collected from a golf course with a long history of clopyralid applications. The resistant phenotype of S. sessilis was highly resistant to clopyralid (over 225-fold). It was also cross-resistant to dicamba, MCPA and picloram but not mecoprop. The level of resistance to dicamba was high (7-14-fold) but much lower (2-3-fold) for both MCPA and picloram. The phenotype was morphologically distinct from its susceptible counterpart. Individuals of the clopyralid-resistant phenotype had fewer lobes on their leaves and were slightly larger compared to the susceptible phenotype. Resistant individuals also had a larger leaf area and greater root dry weight than the susceptible plants. An evaluation of internal transcribed spacer (ITS) regions confirmed that clopyralid-resistant phenotypes are conspecific with S. sessilis. In summary, the cross-resistance to several auxinic herbicides in this S. sessilis phenotype greatly reduces chemical options for controlling it; thus, other integrated management practices may be needed such as using turfgrass competition to reduce weed germination. However, the morphological differences between resistant and susceptible plants make it easy to see, which will help with its management.


Subject(s)
Asteraceae/physiology , Herbicide Resistance , Picolinic Acids/toxicity , Asteraceae/drug effects , Asteraceae/growth & development , Base Sequence , DNA, Intergenic/genetics , Logistic Models , Nucleic Acid Conformation , Plant Leaves/anatomy & histology , Plant Leaves/drug effects
10.
Plant Cell Rep ; 40(9): 1665-1678, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34052885

ABSTRACT

KEY MESSAGE: Improved compact shoot architecture of Osteospermum fruticosum Ri lines obtained through Rhizobium rhizogenes transformation reduces the need for chemical growth retardants. Compactness is for many ornamental crops an important commercial trait that is usually obtained through the application of growth retardants. Here, we have adopted a genetic strategy to introduce compactness in the perennial shrub Cape daisy (Osteospermum fruticosum Norl.). To this end, O. fruticosum was transformed using six different wild type Rhizobium rhizogenes strains. The most effective R. rhizogenes strains Arqua1 and ATCC15834 were used to create hairy root cultures from six Cape daisy genotypes. These root cultures were regenerated to produce transgenic Ri lines, which were analyzed for compactness. Ri lines displayed the characteristic Ri phenotype, i.e., reduced plant height, increased branching, shortened internodes, shortened peduncles, and smaller flowers. Evaluation of the Ri lines under commercial production conditions showed that similar compactness was obtained as the original Cape daisy genotypes treated with growth retardant. The results suggest that the use of chemical growth retardants may be omitted or reduced in commercial production systems of Cape daisy through implementation of Ri lines in future breeding programs.


Subject(s)
Agrobacterium/physiology , Asteraceae/growth & development , Plant Shoots/physiology , Asteraceae/drug effects , Asteraceae/genetics , Asteraceae/microbiology , Chlormequat/pharmacology , Coculture Techniques , Phenotype , Plant Breeding/methods , Plant Growth Regulators/pharmacology , Plant Roots/cytology , Plant Roots/growth & development , Plant Shoots/drug effects , Tissue Culture Techniques/methods , Transformation, Genetic/physiology
11.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348898

ABSTRACT

The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species-Pilosella officinarum and Taraxacum officinale-in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells.


Subject(s)
Asteraceae/metabolism , Cell Wall/metabolism , Epitopes/immunology , Mucoproteins/metabolism , Ovule/metabolism , Pectins/metabolism , Taraxacum/metabolism , Asteraceae/growth & development , Asteraceae/immunology , Cell Wall/immunology , Mucoproteins/immunology , Ovule/immunology , Pectins/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Seeds/immunology , Seeds/metabolism , Taraxacum/growth & development , Taraxacum/immunology
12.
Plant Physiol ; 184(3): 1455-1468, 2020 11.
Article in English | MEDLINE | ID: mdl-32900982

ABSTRACT

The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3 Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.


Subject(s)
Asteraceae/growth & development , Asteraceae/genetics , Inflorescence/growth & development , Inflorescence/genetics , MADS Domain Proteins/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics
13.
Genes (Basel) ; 11(9)2020 09 10.
Article in English | MEDLINE | ID: mdl-32927657

ABSTRACT

Most Hieracium subgenus Pilosella species are self-incompatible. Some undergo facultative apomixis where most seeds form asexually with a maternal genotype. Most embryo sacs develop by mitosis, without meiosis and seeds form without fertilization. Apomixis is controlled by dominant loci where recombination is suppressed. Loci deletion by γ-irradiation results in reversion to sexual reproduction. Targeted mutagenesis of genes at identified loci would facilitate causal gene identification. In this study, the efficacy of CRISPR/Cas9 editing was examined in apomictic Hieracium by targeting mutations in the endogenous PHYTOENE DESATURASE (PDS) gene using Agrobacterium-mediated leaf disk transformation. In three experiments, the expected albino dwarf-lethal phenotype, characteristic of PDS knockout, was evident in 11% of T0 plants, 31.4% were sectorial albino chimeras, and the remainder were green. The chimeric plants flowered. Germinated T1 seeds derived from apomictic reproduction in two chimeric plants were phenotyped and sequenced to identify PDS gene edits. Up to 86% of seeds produced albino seedlings with complete PDS knockout. This was attributed to continuing Cas9-mediated editing in chimeric plants during apomictic seed formation preventing Cas9 segregation from the PDS target. This successful demonstration of efficient CRISPR/Cas9 gene editing in apomictic Hieracium, enabled development of the discussed strategies for future identification of causal apomixis genes.


Subject(s)
Apomixis , Asteraceae/genetics , CRISPR-Cas Systems , Oxidoreductases/antagonists & inhibitors , Plant Proteins/antagonists & inhibitors , Plants, Genetically Modified/genetics , Seeds/genetics , Asteraceae/growth & development , Asteraceae/metabolism , Gene Expression Regulation, Plant , Genetic Loci , Oxidoreductases/genetics , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Seeds/growth & development , Seeds/metabolism
14.
Sci Rep ; 10(1): 11343, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647162

ABSTRACT

An efficient regeneration system via shoot organogenesis and somatic embryogenesis from in vitro leaf and root explants was established for Scaevola sericea for the first time. The highest axillary shoot proliferation coefficient (4.8) was obtained on Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 6-benzyladenine (BA) and 0.1 mg/L α-naphthaleneacetic acid (NAA) every 45 days. Young in vitro leaves and roots, which were used as explants, were cultured onto medium supplemented with different plant growth regulators. Our results showed that only cytokinins BA and thidiazuron (TDZ), could induce adventitious shoots and somatic embryos from leaf and root explants. The optimal medium to achieve this was MS medium supplemented with 2.5 mg/L BA and which induced most adventitious shoots (2.7) and somatic embryos (17.3) from leaf explants within 30 days. From root explants, 1.1 adventitious shoots and 7.6 somatic embryos could be induced on MS medium supplemented with 2.5 mg/L TDZ. Histological observation showed that both somatic embryos and adventitious shoots were originated from homogeneous parenchyma and the development of somatic embryos was visible. Maximum rooting percentage (99.0%) was achieved on half-strength MS medium supplemented with 2.5 mg/L NAA. Well-rooted plantlets, which were transplanted into a substrate of pure river sand, displayed a high survival percentage of 91.7% after transplanting for 45 days while the best substrate for plantlet growth was river sand: coral sand (1:1).


Subject(s)
Asteraceae/growth & development , Culture Media/chemistry , Plant Growth Regulators/pharmacology , Plant Shoots/growth & development , Plant Somatic Embryogenesis Techniques , Asteraceae/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects
15.
Toxins (Basel) ; 12(7)2020 07 10.
Article in English | MEDLINE | ID: mdl-32664345

ABSTRACT

Parthenium weed (Parthenium hysterophorus L.) is an invasive plant species in around 50 countries and a 'Weed of National Significance' in Australia. This study investigated the relative toxicity of the leaf, shoot and root extracts of two geographically separate and morphologically distinct biotypes of parthenium weed in Queensland, Australia. Parthenium weed exhibited higher phytotoxic, cytotoxic and photocytotoxic activity in leaf tissue extracts in contrast to shoot and root. The germination and seedling growth of a dicot species (garden cress) were inhibited more than those of a monocot species (annual ryegrass) using a phytotoxicity bioassay. The cytotoxicity of leaf extracts was assessed in a mouse fibroblast cell suspension assay and increased under high ultraviolet A(UV-A) radiation. A major secondary metabolite, parthenin, was found in abundance in leaf extracts and was positively correlated with cytotoxicity but not with photocytotoxicity or phytotoxicity. Ambrosin and chlorogenic acid were also detected and were positively correlated with germination inhibition and the inhibition of radicle elongation, respectively. In addition, other currently unidentified compounds in the leaf extracts were positively correlated with phytotoxicity, cytotoxicity and photocytotoxicity with two to three molecules strongly correlated in each case. Both parthenium weed biotypes investigated did not differ with respect to their relative toxicity, despite their reported differences in invasive potential in the field. This suggests that secondary chemistry plays a limited role in their invasion success.


Subject(s)
Asteraceae/toxicity , Metabolome , Metabolomics , Plant Extracts/toxicity , Plant Weeds/toxicity , Animals , Asteraceae/growth & development , Asteraceae/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/pathology , Germination/drug effects , Mice , NIH 3T3 Cells , Parthenogenesis , Plant Extracts/metabolism , Plant Leaves/metabolism , Plant Leaves/toxicity , Plant Roots/metabolism , Plant Roots/toxicity , Plant Shoots/metabolism , Plant Shoots/toxicity , Plant Weeds/growth & development , Plant Weeds/metabolism , Queensland , Secondary Metabolism
16.
Ecotoxicol Environ Saf ; 203: 110988, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32678761

ABSTRACT

The screening and identification of hyperaccumulators is the key to the phytoremediation of soils contaminated by heavy metal (HM). Arbuscular mycorrhizal fungus (AMF) can improve plant growth and tolerance to HM; therefore, AMF-assisted phytoextraction has been regarded as a potential technique for the remediation of HM-polluted soils. A greenhouse pot experiment was conducted to determine whether Sphagneticola calendulacea is a Cd-hyperaccumulator and to investigate the effect of the AMF-Funneliformis mosseae (FM) on plant growth and on the accumulation, subcellular distribution and chemical form of Cd in S. calendulacea grown in soils supplemented with different Cd levels. At 25, 50 and 100 mg Cd kg-1 level, S. calendulacea showed high Cd tolerance, the translocation factor and the bioconcentration factor exceeded 1, and accumulation of more than 100 mg Cd kg-1 was observed in the aboveground parts of the plant, meeting the requirements for a Cd-hyperaccumulator. Moreover, FM colonization significantly increased both biomasses and Cd concentration in S. calendulacea. After FM inoculation, the Cd concentrations and proportions increased in the cell walls, but exhibited no significant change in the organelles of the shoots. Meanwhile, FM symbiosis contributed to the conversion of Cd from highly toxic chemical forms (extracted by 80% ethanol and deionized water) to less toxic chemical forms (extracted by 1 M NaCl, 2% acetic acid, 0.6 M HCl) of Cd in the shoots. Overall, S. calendulacea is a typical Cd-hyperaccumulator, and FM symbiosis relieved the phytotoxicity of Cd and promoted plant growth and Cd accumulation, and thus greatly increasing the efficiency of phytoextraction for Cd-polluted soil. Our study provides a theoretical basis and application guidance for the remediation of Cd-contaminated soil by the symbiont of S. calendulacea with FM.


Subject(s)
Asteraceae/metabolism , Bioaccumulation , Cadmium/metabolism , Glomeromycota/physiology , Mycorrhizae/physiology , Soil Pollutants/metabolism , Asteraceae/growth & development , Asteraceae/microbiology , Biodegradation, Environmental
17.
Food Chem ; 332: 127393, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32603921

ABSTRACT

Jambu [Acmella oleracea (L.) R.K. Jansen] is an edible plant with a wide range of constituents of biological interest. In this study, the chemical composition of leaves, flowers and stems of jambu cultivated in hydroponic and conventional systems was investigated. In both crop systems, the leaves showed the highest total phenolic content, total flavonoid content and in vitro antioxidant capacity. The extracts were characterized by determining 45 compounds, including phenolic acids, glycosylated flavonoids, alkamides and fatty acids, by LC-MS analysis. Of these compounds, 31 are described for the first time in this species, five of which are reported for the first time in the literature. The PCA and cluster analysis results distinguished different anatomical parts (PC1 and PC2) and cultivation systems (PC3) into well-defined groups.


Subject(s)
Asteraceae/chemistry , Asteraceae/growth & development , Hydroponics , Phytochemicals/analysis , Plant Structures/chemistry , Asteraceae/anatomy & histology , Chromatography, Liquid , Cluster Analysis , Mass Spectrometry , Plant Leaves/chemistry , Principal Component Analysis
18.
Int J Mol Sci ; 21(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604977

ABSTRACT

Smallanthus sonchifolius, also known as yacón, is an Andean crop species commercialized for its nutraceutical and medicinal properties. The tuberous roots of yacón accumulate a diverse array of probiotic and bioactive metabolites including fructooligosaccharides and caffeic acid esters. However, the metabolic diversity of yacón remains unexplored, including the site of biosynthesis and accumulation of key metabolite classes. We report herein a multidisciplinary approach involving metabolomics, gene expression and scanning electron microscopy, to provide a comprehensive analysis of the diversity, distribution and spatial regulation of the specialized metabolism in yacón. Our results demonstrate that different metabolic fingerprints and gene expression patterns characterize specific tissues, organs and cultivars of yacón. Manual inspection of mass spectrometry data and molecular networking allowed the tentative identification of 71 metabolites, including undescribed structural analogues of known bioactive compounds. Imaging by scanning electron microscopy revealed the presence of a new type of glandular trichome in yacón bracts, with a distinctive metabolite profile. Furthermore, the high concentration of sesquiterpene lactones in capitate glandular trichomes and the restricted presence of certain flavonoids and caffeic acid esters in underground organs and internal tissues suggests that these metabolites could be involved in protective and ecological functions. This study demonstrates that individual organs and tissues make specific contributions to the highly diverse and specialized metabolome of yacón, which is proving to be a reservoir of previously undescribed molecules of potential significance in human health.


Subject(s)
Asteraceae/metabolism , Dietary Supplements/analysis , Gene Expression Regulation, Plant , Metabolome , Phytochemicals/metabolism , Plant Extracts/metabolism , Plant Proteins/metabolism , Asteraceae/genetics , Asteraceae/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism
19.
Sci Rep ; 10(1): 9431, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523106

ABSTRACT

Growth behavior of different species under different habitats can be studied by comparing the production of biomass, plasticity index and relative competitive interaction. However, these functional traits of invasive species received rare consideration for determining the invasion success of invasive species at wetlands. Here, we examined the effect of water depth at 5 cm and 15 cm (static and fluctuated) with different nutrient concentrations (full-strength (n1), 1/4-strength (n2) and 1/8-strength (n3) Hoagland solution) on functional traits of invasive Wedelia trilobata and its congener native Wedelia chinensis under mono and mixed culture. Water depth of 5 cm with any of the nutrient treatments (n1, n2 and n3) significantly restrained the photosynthesis, leaf nitrogen and photosynthetic nitrogen use efficiency (PNUE) of both W. trilobata and W. chinensis. While, increase in the water depth to 15 cm with low nutrient treatment (n3) reduced more of biomass of W. chinensis under mixed culture. However, relative competition interaction (RCI) was recorded positive for W. trilobata and seemingly W. trilobata benefited more from RCI under high-fluctuated water depth at 15 cm in mixed culture. Therefore, higher PNUE, more competitive ability and higher plasticity may contribute to the invasiveness of W. trilobata in wetlands.


Subject(s)
Wedelia/growth & development , Wedelia/metabolism , Asteraceae/growth & development , Asteraceae/metabolism , Biological Evolution , Biomass , Ecosystem , Hydrology , Introduced Species/trends , Nitrogen/metabolism , Photosynthesis , Water , Wedelia/genetics , Wetlands
20.
J Sci Food Agric ; 100(13): 4893-4900, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32478435

ABSTRACT

BACKGROUND: Invasive plant species present a serious threat to the environment, as well as human and animal health. An interaction may exist between the climatic changes and invasive plant species. In this 2-year study, we investigated the effects of warming, CO2 and nitrogen application on the biomass, growth and leaf tissue nitrogen concentration of three invasive weed species. Treatments were: (i) simulated (elevated) CO2 (approximately 800-900 ppm); (ii) warming or high temperature (day/night 25/15 °C); (iii) simulated (elevated) CO2 combined with high temperature (CO2 = approximately 800-900 ppm; temperature day/night 25/15 °C); and (iv) control conditions (CO2 = approximately 400-450 ppm; temperature day/night 20/10 °C). The doses of nitrogen were: (i) 0 kg ha-1 (control; low); (ii) 60 kg ha-1 (medium); and (iii) 120 kg ha-1 (high). RESULTS: Elevated CO2 and elevated CO2 combined with high temperature improved biomass and the growth of the tested invasive weed species: Lactuca serriola L., Hordeum murinum L. and Bromus tectorum L. Nitrogen application had little effect on grasses, whereas the broadleaved weed mostly had a positive response to nitrogen application. Invasive weed species were generally negatively or neutrally affected by warming. CONCLUSION: The results of the present study demonstrate that nitrogen fertilization under different climatic conditions improved few of the parameters, whereas elevated CO2 promoted most of the growth parameters of invasive weeds. Overall, is it concluded that these weeds will be more invasive under climate change conditions. © 2020 Society of Chemical Industry.


Subject(s)
Asteraceae/growth & development , Carbon Dioxide/analysis , Hordeum/growth & development , Nitrogen/metabolism , Plant Weeds/growth & development , Asteraceae/metabolism , Biomass , Carbon Dioxide/metabolism , Climate Change , Ecosystem , Hordeum/metabolism , Mediterranean Region , Nitrogen/analysis , Plant Weeds/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...