Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 54(4): 540-553, 2022 04.
Article in English | MEDLINE | ID: mdl-33792933

ABSTRACT

BACKGROUND AND OBJECTIVES: Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side-effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. STUDY DESIGN/MATERIALS AND METHODS: A pulsed laser-probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer-assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation-mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post-irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). RESULTS: Exposure to laser energy-doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. CONCLUSION: PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.


Subject(s)
Asthenozoospermia , Low-Level Light Therapy , Asthenozoospermia/genetics , Asthenozoospermia/radiotherapy , Flow Cytometry , Humans , Male , Sperm Motility/radiation effects , Spermatozoa/metabolism
2.
Lasers Med Sci ; 30(1): 235-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25204851

ABSTRACT

Sperm motility is an important parameter of male fertility and depends on energy consumption. Photobiomodulation with light-emitting diode (LED) is known to stimulate respiratory chain in mitochondria of different mammalian cells. The aim of this research was to evaluate the effect of photobiomodulation with LED on sperm motility in infertile men with impaired sperm motility-asthenozoospermia. Thirty consecutive men with asthenozoospermia and normal sperm count who visited the infertility clinic of University Medial Centre Ljubljana between September 2011 and February 2012 were included in the study. Semen sample of each man was divided into five parts: one served as a non-treated (native) control and four parts were irradiated with LED of different wavelengths: (1) 850 nm, (2) 625, 660 and 850 nm, (3) 470 nm and (4) 625, 660 and 470 nm. The percentage of motile sperm and kinematic parameters were measured using a Sperm Class Analyser system following the WHO recommendations. In the non-treated semen samples, the average ratio of rapidly progressive sperms was 12% and of immotile sperm 73%. Treating with LED significantly increased the proportion of rapidly progressive sperm (mean differences were as follows: 2.83 (1.39-4.28), 3.33 (1.61-5.05), 4.50 (3.00-5.99) and 3.83 (2.31-5.36) for groups 1-4, respectively) and significantly decreased the ratio of immotile sperm (the mean differences and 95% CI were as follows: 3.50 (1.30-5.70), 4.33 (2.15-6.51), 5.83 (3.81-7.86) and 5.50 (2.98-8.02) for groups 1-4, respectively). All differences were highly statistically significant. This finding confirmed that photobiomodulation using LED improved the sperm motility in asthenozoospermia regardless of the wavelength.


Subject(s)
Asthenozoospermia/radiotherapy , Sperm Motility/radiation effects , Animals , Humans , Light , Low-Level Light Therapy , Male , Treatment Outcome
3.
Lasers Med Sci ; 29(1): 97-104, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23407899

ABSTRACT

Sperm motility is known as an effective parameter in male fertility, and it depends on energy consumption. Low-level laser irradiation could increase energy supply to the cell by producing adenosine triphosphate. The purpose of this study is to evaluate how the low-level laser irradiation affects the human sperm motility. Fresh human semen specimens of asthenospermic patients were divided into four equal portions and irradiated by 830-nm GaAlAs laser irradiation with varying doses as: 0 (control), 4, 6 and 10 J/cm(2). At the times of 0, 30, 45 and 60 min following irradiation, sperm motilities are assessed by means of computer-aided sperm analysis in all samples. Two additional tests [HOS and sperm chromatin dispersion (SCD) tests] were also performed on the control and high irradiated groups as well. Sperm motility of the control groups significantly decreased after 30, 45 and 60 min of irradiation, while those of irradiated groups remained constant or slightly increased by passing of time. Significant increases have been observed in doses of 4 and 6 J/cm(2) at the times of 60 and 45 min, respectively. SCD test also revealed a non-significant difference. Our results showed that irradiating human sperms with low-level 830-nm diode laser can improve their progressive motility depending on both laser density and post-exposure time.


Subject(s)
Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy/methods , Sperm Motility/radiation effects , Adult , Asthenozoospermia/physiopathology , Asthenozoospermia/radiotherapy , DNA Fragmentation/radiation effects , Humans , In Vitro Techniques , Male , Osmotic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...