Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
J Cell Mol Med ; 28(10): e18331, 2024 May.
Article in English | MEDLINE | ID: mdl-38780500

ABSTRACT

Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, ß-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, ß-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1ß, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Heart Failure , Molecular Docking Simulation , Myocytes, Cardiac , Network Pharmacology , Astragalus propinquus/chemistry , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Angiotensin II/metabolism , Kaempferols/pharmacology , Kaempferols/chemistry , Rats , Humans , Isoflavones/pharmacology , Isoflavones/chemistry
2.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792148

ABSTRACT

With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971-0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Monosaccharides , Polysaccharides , Chromatography, High Pressure Liquid/methods , Monosaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/analysis , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mice , Animals , RAW 264.7 Cells , Astragalus Plant/chemistry , Immunologic Factors/analysis , Immunologic Factors/chemistry
3.
Phytomedicine ; 129: 155646, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733903

ABSTRACT

BACKGROUND: Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE: This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS: Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS: Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 µmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-ß1, CTGF, collagen IV, Wnt4 and ß-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION: AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.


Subject(s)
Astragalus propinquus , Diabetic Nephropathies , Disease Models, Animal , Oxidative Stress , Diabetic Nephropathies/drug therapy , Animals , Astragalus propinquus/chemistry , Oxidative Stress/drug effects , Kidney/drug effects , Kidney/pathology , Fibrosis/drug therapy , Plant Extracts/pharmacology , Creatinine/blood , Blood Urea Nitrogen , Albuminuria/drug therapy
4.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675511

ABSTRACT

Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.


Subject(s)
Antioxidants , Astragalus propinquus , Drugs, Chinese Herbal , Antioxidants/pharmacology , Antioxidants/chemistry , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Astragalus Plant/chemistry , Oxidative Stress/drug effects , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Medicine, Chinese Traditional , Saponins/pharmacology , Saponins/chemistry
5.
Phytochemistry ; 222: 114072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561105

ABSTRACT

Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.


Subject(s)
Antineoplastic Agents, Phytogenic , Astragalus propinquus , Saponins , Triterpenes , Saponins/chemistry , Saponins/pharmacology , Saponins/isolation & purification , Humans , Astragalus propinquus/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Plant Leaves/chemistry , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Dose-Response Relationship, Drug , Interleukin-2/metabolism , HT29 Cells
6.
Phytomedicine ; 128: 155412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579666

ABSTRACT

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Subject(s)
HaCaT Cells , Isoflavones , Psoriasis , Signal Transduction , Isoflavones/pharmacology , Psoriasis/drug therapy , Animals , Signal Transduction/drug effects , Humans , Mice , Interferons , Cell Survival/drug effects , Keratinocytes/drug effects , Inflammation/drug therapy , Astragalus propinquus/chemistry , Mice, Inbred BALB C , Male , Disease Models, Animal
7.
J Pharm Biomed Anal ; 244: 116125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554553

ABSTRACT

As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.


Subject(s)
Drugs, Chinese Herbal , Electrophoresis, Capillary , Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Humans , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Electrophoresis, Capillary/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis , Hypoglycemic Agents/pharmacology , Kinetics , Medicine, Chinese Traditional/methods , Morus/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
8.
Am J Chin Med ; 52(2): 513-539, 2024.
Article in English | MEDLINE | ID: mdl-38533568

ABSTRACT

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Subject(s)
Astragalus propinquus , Interleukin-22 , Aged , Humans , Mice , Male , Female , Animals , Infant , Child, Preschool , Astragalus propinquus/chemistry , Intestines , Signal Transduction , Intestine, Small , Stem Cells , Polysaccharides/pharmacology , Aging , Regeneration
9.
Arch Pharm Res ; 47(3): 165-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38493280

ABSTRACT

Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.


Subject(s)
Astragalus Plant , Botany , Drugs, Chinese Herbal , Saponins , Astragalus Plant/chemistry , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Saponins/pharmacology
10.
Bioorg Chem ; 145: 107230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387397

ABSTRACT

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Subject(s)
Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Triterpenes , Humans , Molecular Structure , Astragalus propinquus/chemistry , Molecular Docking Simulation , Saponins/chemistry , Oleanolic Acid/chemistry , Plant Components, Aerial/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry
11.
Phytomedicine ; 123: 155201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976693

ABSTRACT

BACKGROUND: Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. PURPOSE: This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. METHODS: A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. RESULTS: Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-ß-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. CONCLUSION: Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Astragalus propinquus/chemistry , Tandem Mass Spectrometry/methods , Alanine
12.
Physiol Plant ; 175(6): e14054, 2023.
Article in English | MEDLINE | ID: mdl-38148191

ABSTRACT

The influence of dark septate endophytic (DSE) on the antioxidant activity of Astragalus membranaceus var. mongholicus under heat stress was investigated. A. membranaceus plants, with or without DSE inoculation, were grown at 28°C for 8 weeks in a greenhouse and subsequently subjected to heat stress conditions (42°C) in an artificial climate chamber. DSE inoculation significantly decreased the malondialdehyde (MDA) content during the initial three days of heat stress. The activities of superoxide dismutase (SOD) and peroxidase (POD) of A. membranaceus leaves were significantly enhanced by DSE inoculation under heat stress, with SOD activities being 63-81% higher than in other treatments. The glutathione (GSH) and putrescine (Put) contents accumulated significantly on the third day under heat stress with DSE inoculation. Additionally, the contents of soluble sugars and proline (Pro) exhibited significant increases on the seventh day of heat stress and were 33-55% and 81-83% higher than in other treatments, respectively. Three-way ANOVA shows that DSE inoculation under heat stress exerted a significant impact on MDA. Multivariate linear regression and structural equality modelling (SEM) further show that the interaction among these antioxidants significantly decreased MDA content and maintained the normal function of cell membranes. In conclusion, DSE inoculation enhanced the heat tolerance of A. membranaceus by boosting its antioxidant capacity and reducing MDA production. This study highlights the potential of utilizing DSE as a strategy to enhance plant heat tolerance.


Subject(s)
Antioxidants , Astragalus propinquus , Antioxidants/metabolism , Astragalus propinquus/chemistry , Astragalus propinquus/metabolism , Endophytes , Plants/metabolism , Superoxide Dismutase , Heat-Shock Response
13.
Article in English | MEDLINE | ID: mdl-38115620

ABSTRACT

The role of herbal medicines in the treatment of viruses and the identification of potential antiviral drugs has been the focus of researchers for decades. The control and treatment of viral diseases are very important due to the evolution of viruses and the emergence of new viruses compared to other pathogens such as fungi and bacteria. Astragalus membranaceus (AM) is a significant medicinal plant. The potential use of this plant and its chemical components in the treatment of inflammatory illnesses and viral diseases has been vigorously researched recently. Astragalus polysaccharides (APS) make up the majority of AM's ingredients. The main mechanisms of the antiviral effect of APS have been investigated in some studies. The results of these studies show that APS can exert its antiviral effect by enhancing type I IFN signaling, inhibiting the expression of Bax and Caspase-3 proteins in the apoptosis pathway, and other antiviral mechanisms such as anti-inflammatory activities. The most well-known inflammatory products of APS's antiviral effects are B-cell proliferation, antibody products, nuclear factor-kappa B (NF-κB), and IL(s). Although it has a known effectiveness, there are some limitations to this substance's use as medicine. The use of nanotechnology is removing these limitations and its ability to be used as an anti-virus agent. The purpose of this review is to emphasize the role of AM, especially APS, in controlling inflammatory pathways in the treatment of viral infections. With the emergence of these herbal medications, a new path has been opened in the control and treatment of viral infections.


Subject(s)
Plants, Medicinal , Virus Diseases , Astragalus propinquus/chemistry , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Diseases/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
14.
ACS Appl Mater Interfaces ; 15(41): 47939-47954, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791782

ABSTRACT

Astragalus membranaceus (Fisch.) Bge. (AM) and Angelica sinensis (Oliv.) Diels (AS) constitute a classic herb pair in prescriptions to treat myocardial fibrosis. To date, research on the AM-AS herb pair has mainly focused on the chemical compositions associated with therapeutic efficacy. However, supermolecules actually exist in herb codecoctions, and their self-assembly mechanism remains unclear. In this study, supermolecules originating from AM-AS codoping reactions (AA-NPs) were first reported. The chemical compositions of AA-NPs showed a dynamic self-assembly process. AA-NPs with different decoction times had similar surface groups and amorphous states; however, the size distributions of these nanoparticles might be different. Taking the interaction between Z-ligustilide and astragaloside IV as an example to understand the self-assembly mechanism of AA-NPs, it was found that the complex could be formed with a molar ratio of 2:1. Later, AA-NPs were proven to be effective in the treatment of myocardial fibrosis both in vivo and in vitro, the in-depth mechanisms of which were related to the recovery of cardiac function, reduced collagen deposition, and inhibition of the endothelial-to-mesenchymal transition that occurred in the process of myocardial fibrosis. Thus, AA-NPs may be the chemical material basis of the molecular mechanism of the AM-AS decoction in treating isoproterenol-induced myocardial fibrosis. Taken together, this work provides a supramolecular strategy for revealing the interaction between effective chemical components in herb-pair decoctions.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Astragalus propinquus/chemistry , Angelica sinensis/chemistry , Drugs, Chinese Herbal/chemistry , Fibrosis
15.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836597

ABSTRACT

Presently, the utilization of chlormequat in Astragalus mongholicus Bunge (Leguminosae) cultivation is prevalent for augmenting rhizome (Astragali Radix) yield. However, indiscriminate and excessive chlormequat employment can detrimentally influence Astragali Radix quality and safety. This research aimed to comprehensively comprehend chlormequat risks and its influence on Astragali Radix metabolites. Diverse chlormequat concentrations were employed in Astragalus mongholicus cultivation, with subsequent analysis of residual chlormequat levels in Astragali Radix across treatment groups. Astragali Radix metabolic profiling was conducted through UPLC-QTOF-MS, and thirteen principal active components were quantified via UFLC-MS/MS. Findings revealed a direct correlation between chlormequat residue levels in Astragali Radix and application concentration, with high-dose residue surpassing 5.0 mg/kg. Metabolomics analysis identified twenty-six distinct saponin and flavonoid metabolites. Notably, the application of chlormequat led to the upregulation of seven saponins (e.g., astragaloside I and II) and downregulation of six flavonoids (e.g., methylnissolin-3-O-glucoside and astraisoflavan-7-O-ß-d-glucoside). Quantitative analysis demonstrated variable contents of active ingredients due to differing chlormequat concentrations, leading to astragaloside I increase (14.59-62.55%) and isoastragaloside II increase (4.8-55.63%), while methylnissolin-3-O-glucoside decreased (22.18-41.69%), as did astraisoflavan-7-O-ß-d-glucoside (21.09-47.78%). In conclusion, chlormequat application influenced multiple active components in Astragali Radix, causing constituent proportion variations. Elevated chlormequat concentrations led to increased active components alongside heightened chlormequat residues in Astragali Radix. Consequently, prudent chlormequat application during Astragali Radix production is imperative to avert potential detriments to its quality and safety.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Saponins , Chlormequat , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Astragalus Plant/chemistry , Astragalus propinquus/chemistry , Flavonoids/analysis , Saponins/analysis , Glucosides/analysis
16.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446680

ABSTRACT

Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.


Subject(s)
Saponins , Triterpenes , Astragalus propinquus/chemistry , Flavonoids/chemistry , Triterpenes/chemistry , Saponins/chemistry , Polysaccharides/chemistry
17.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298103

ABSTRACT

The main aim of the study was to assess the acetylcholinesterase-inhibitory potential of triterpenoid saponins (astragalosides) found in the roots of Astragalus mongholicus. For this purpose, the TLC bioautography method was applied and then the IC50 values were calculated for astragalosides II, III and IV (5.9 µM; 4.2 µM, and 4.0 µM, respectively). Moreover, molecular dynamics simulations were carried outto assess the affinity of the tested compounds for POPC and POPG-containing lipid bilayers, which in this case are the models of the blood-brain barrier (BBB). All determined free energy profiles confirmed that astragalosides exhibit great affinity for the lipid bilayer. A good correlation was obtained when comparing the logarithm of n-octanol/water partition coefficient (logPow) lipophilicity descriptor values with the smallest values of free energy of the determined 1D profiles. The affinity for the lipid bilayers changes in the same order as the corresponding logPow values, i.e.,: I > II > III~IV. All compounds exhibit a high and also relatively similar magnitude of binding energies, varying from ca. -55 to -51 kJ/mol. Apositive correlation between the experimentally-determined IC50 values and the theoretically-predicted binding energies expressed by the correlation coefficient value equal 0.956 was observed.


Subject(s)
Saponins , Triterpenes , Astragalus propinquus/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/metabolism , Biomimetics , Lipid Bilayers/metabolism , Triterpenes/chemistry , Saponins/chemistry
18.
Carbohydr Polym ; 316: 121036, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321731

ABSTRACT

Astragalus membranaceus polysaccharides (APS) possess significant biological activities, such as anti-tumor, antiviral, and immunomodulatory activities. However, there is still a lack of research on the structure-activity relationship of APS. In this paper, two carbohydrate-active enzymes from Bacteroides in living organisms were used to prepare degradation products. The degradation products were divided into APS-A1, APS-G1, APS-G2, and APS-G3 according to molecular weight. Structural analysis showed that all degradation products had an α-1,4-linked glucose backbone, but APS-A1 and APS-G3 also had branched chains of α-1,6-linked galactose or arabinogalacto-oligosaccharide. In vitro, immunomodulatory activity evaluation results indicated that APS-A1 and APS-G3 had better immunomodulatory activity, while the immunomodulatory activities of APS-G1 and APS-G2 were comparatively weaker. Molecular interaction detection showed that APS-A1 and APS-G3 could bind to toll-like receptors-4 (TLR-4) with a binding constant of 4.6 × 10-5 and 9.4 × 10-6, respectively, while APS-G1 and APS-G2 failed to bind to TLR-4. Therefore, the branched chains of galactose or arabinogalacto-oligosaccharide played a crucial role in the immunomodulatory activity of APS.


Subject(s)
Astragalus Plant , Astragalus propinquus , Astragalus propinquus/chemistry , Molecular Weight , Toll-Like Receptor 4 , Galactose , Bacteroides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Structure-Activity Relationship , Astragalus Plant/chemistry
19.
Phytochem Anal ; 34(5): 606-616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37226258

ABSTRACT

INTRODUCTION: Standardizing the planting process is an effective way to control the quality stability of herbal resources, which are susceptible to external environmental factors (e.g., moisture, soil, etc.). However, how to scientifically and comprehensively assess the effects of standardized planting on plant quality and quickly test unknown samples has not been addressed. OBJECTIVE: The aim of this study was to determine and compare the metabolite levels of herbs before and after standardized planting, to quickly distinguish their sources, and to evaluate their quality, using the typical herb Astragali Radix (AR) as an example. METHODS: In this study, an efficient strategy using liquid chromatography-mass spectrometry (LC-MS) based on plant metabolomics combined with extreme learning machine (ELM) has been developed to efficiently distinguish and predict AR after standardized planting. Moreover, a comprehensive multi-index scoring method has been developed for the comprehensive evaluation of the quality of AR. RESULTS: The results confirmed that AR after standardized planting was significantly differentiated, with a relatively stable content of 43 differential metabolites, mainly including flavonoids. An ELM model was established based on LC-MS data, and the accuracy in predicting unknown samples could reach more than 90%. As expected, higher total scores were obtained for AR after standardized planting, indicating much better quality. CONCLUSION: A dual system for evaluating the impact of standardized planting on the quality of plant resources has been established, which will significantly contribute to innovation in the quality evaluation of medicinal herbs and support the selection of optimal planting conditions.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Astragalus Plant/chemistry , Chromatography, Liquid , Metabolomics , Chromatography, High Pressure Liquid/methods
20.
Int J Biol Macromol ; 241: 124386, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37054858

ABSTRACT

In this study, two homogeneous polysaccharides (APS-A1 and APS-B1) were isolated from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Their chemical structures were characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-A1 (2.62 × 106 Da) was a 1,4-α-D-Glcp backbone with a 1,4,6-α-D-Glcp branch every ten residues. APS-B1 (4.95 × 106 Da) was a heteropolysaccharide composed of glucose, galactose, and arabinose (75.24:17.27:19.35). Its backbone consisted of 1,4-α-D-Glcp, 1,4,6-α-D-Glcp, 1,5-α-L-Araf and the sidechains composed of 1,6-α-D-Galp and T-α/ß-Glcp. Bioactivity assays showed that APS-A1 and APS-B1 had potential anti-inflammatory activity. They could inhibit the production of inflammatory factors (TNF-α, IL-6, and MCP-1) in LPS-stimulated RAW264.7 macrophages via NF-κB and MAPK (ERK, JNK) pathways. These results suggested that the two polysaccharides could be potential anti-inflammatory supplements.


Subject(s)
Astragalus propinquus , Polysaccharides , Astragalus propinquus/chemistry , Polysaccharides/chemistry , Monosaccharides/chemistry , Macrophages , Anti-Inflammatory Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...