Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.202
Filter
1.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Article in English | MEDLINE | ID: mdl-38845851

ABSTRACT

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Subject(s)
Atherosclerosis , Cholecalciferol , Diet, High-Fat , Gastrointestinal Microbiome , Ginsenosides , Inflammation , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Rats , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Male , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Inflammation/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
2.
Sci Rep ; 14(1): 12917, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839811

ABSTRACT

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Subject(s)
Atherosclerosis , Foam Cells , Inflammation , Saponins , Animals , Foam Cells/drug effects , Foam Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Saponins/pharmacology , Mice , Inflammation/drug therapy , Inflammation/pathology , Allium/chemistry , Male , Apolipoproteins E/deficiency , Diet, High-Fat/adverse effects , NF-kappa B/metabolism , Mice, Inbred C57BL , Lipoproteins, LDL/metabolism
3.
Medicine (Baltimore) ; 103(23): e38404, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847712

ABSTRACT

BACKGROUND: The role of non-nitrogen-containing bisphosphonates (non-N-BPs) and nitrogen-containing bisphosphonates (N-BPs) in the treatment of atherosclerosis (AS) and vascular calcification (VC) is uncertain. This meta-analysis was conducted to evaluate the efficacy of non-N-BPs and N-BPs in the treatment of AS and VC. METHODS: The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases were searched from their inception to July 5th, 2023. Eligible studies comparing bisphosphonates (BPs) versus no BPs in the treatment of AS and VC were included. The data were analyzed using Review Manager Version 5.3. RESULTS: Seventeen studies were included in this meta-analysis. Twelve were randomized control trials (RCTs), and 5 were nonrandomized studies. Overall, 813 patients were included in the BPs group, and 821 patients were included in the no BPs group. Compared with no BP treatment, non-N-BP or N-BP treatment did not affect serum calcium (P > .05), phosphorus (P > .05) or parathyroid hormone (PTH) levels (P > .05). Regarding the effect on serum lipids, non-N-BPs decreased the serum total cholesterol (TC) level (P < .05) and increased the serum triglyceride (TG) level (P < .01) but did not affect the serum low-density lipoprotein cholesterol (LDL-C) level (P > .05). N-BPs did not affect serum TC (P > .05), TG (P > .05) or LDL-C levels (P > .05). Regarding the effect on AS, non-N-BPs did not have a beneficial effect (P > .05). N-BPs had a beneficial effect on AS, including reducing the intima-media thickness (IMT) (P < .05) and plaque area (P < .01). For the effect on VC, non-N-BPs had a beneficial effect (P < .01), but N-BPs did not have a beneficial effect (P > .05). CONCLUSION: Non-N-BPs and N-BPs did not affect serum calcium, phosphorus or PTH levels. Non-N-BPs decreased serum TC levels and increased serum TG levels. N-BPs did not affect serum lipid levels. Non-N-BPs had a beneficial effect on VC, and N-BPs had a beneficial effect on AS.


Subject(s)
Atherosclerosis , Diphosphonates , Vascular Calcification , Humans , Diphosphonates/therapeutic use , Atherosclerosis/drug therapy , Vascular Calcification/drug therapy , Vascular Calcification/blood , Nitrogen , Randomized Controlled Trials as Topic , Bone Density Conservation Agents/therapeutic use
4.
Front Immunol ; 15: 1377470, 2024.
Article in English | MEDLINE | ID: mdl-38698839

ABSTRACT

Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.


Subject(s)
Atherosclerosis , Flavonoids , Humans , Flavonoids/therapeutic use , Flavonoids/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/immunology , Animals , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
5.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760755

ABSTRACT

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Lipoproteins, HDL , Macrophages , Monocytes , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Animals , Cardiovascular Diseases/drug therapy , Monocytes/drug effects , Nanoparticles/chemistry , Atherosclerosis/drug therapy , Plaque, Atherosclerotic/drug therapy , Nanomedicine/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
6.
FASEB J ; 38(10): e23678, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780199

ABSTRACT

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Subject(s)
Atherosclerosis , Ferroptosis , Melatonin , NF-E2-Related Factor 2 , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Melatonin/pharmacology , Mice , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Male , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Diet, High-Fat/adverse effects , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Lipoproteins, LDL/metabolism , Antioxidants/pharmacology
7.
Article in English | MEDLINE | ID: mdl-38780292

ABSTRACT

ABSTRACT: Arteriosclerosis (AS) is a chronic inflammatory disease and Buyang Huanwu decoction (BHD) has been identified as an anti-atherosclerosis effect, and the study is aimed to investigate the underlying mechanism. The E4 allele of Apolipoprotein E (ApoE) is associated with both metabolic dysfunction and an enhanced pro-inflammatory response, ApoE-knockout (ApoE-/-) mice were fed with a high-fat diet to establish an arteriosclerosis model and treated with BHD or atorvastatin (as a positive control). The atherosclerotic plaque in each mouse was evaluated using Oil red O Staining. Elisa kits were used to evaluate blood lipid, interleukin-6 (IL-6), IL-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and tumor growth factor beta (TGF-ß) contents, while Western blot was applicated to measure inducible nitric oxide synthase (iNOS), arginase I (Arg-1) expression. Meanwhile, pyruvate kinase M2 (PKM2), hypoxia-inducible factor-1 alpha (HIF-1α) and its target genes glucose transporter type 1 (GLUT1), lactate dehydrogenase A (LDHA), and 3-phosphoinositide-dependent kinase 1 (PDK1), as well as IL-6, IL-1ß, TNF-α, IL-4, IL-10, and TGF-ß were evaluated by the quantitative reverse transcription-polymerase chain reaction. BHD treatment significantly reduced body weight and arteriosclerosis plaque area and blood lipid levels including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Meanwhile, BHD demonstrated a significant suppression of M1 polarization, by decreased secretion of iNOS and pro-inflammatory factors (IL-6, IL-1ß, and TNF-α) in ApoE-/- mice. The present study also revealed that BHD promotes the activation of M2 polarization, characterized by the expression of Arg-1 and anti-inflammatory factors (IL-4 and IL-10). In addition, PKM2/HIF-1α signaling was improved by M1/M2 macrophages polarization induced by BHD. The downstream target genes (GLUT1, LDHA, and PDK1) expression was significantly increased in high fat feeding ApoE-/- mice, and those of which were recused by BHD and Atorvastatin. These results suggested that M1/M2 macrophages polarization produce the inflammatory response against AS progress after BHD exposure.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Macrophages , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Disease Models, Animal , Mice, Knockout, ApoE , Mice, Knockout , Mice, Inbred C57BL , Cytokines/metabolism
8.
Article in English | MEDLINE | ID: mdl-38780293

ABSTRACT

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Subject(s)
Apolipoproteins E , Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Mice , Male , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice, Knockout , Mice, Knockout, ApoE
9.
ACS Appl Mater Interfaces ; 16(19): 24206-24220, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700017

ABSTRACT

Atherosclerosis is the main risk factor for cardiovascular disease, which accounts for the majority of mortality worldwide. A significantly increased plasma level of low-density lipoprotein cholesterol (LDL-C), surrounded by a monolayer of phospholipids, free cholesterol, and one apolipoprotein B-100 (ApoB-100) in the blood, plays the most significant role in driving the development of atherosclerosis. Commercially available cholesterol-lowering drugs are not sufficient for preventing recurrent cardiovascular events. Developing alternative strategies to decrease the plasma cholesterol levels is desirable. Herein, we develop an approach for reducing LDL-C levels using gas-filled microbubbles (MBs) that were coated with anti-ApoB100 antibodies. These targeted MBApoB100 could selectively capture LDL particles in the bloodstream through forming LDL-MBApoB100 complexes and transport them to the liver for degradation. Further immunofluorescence staining and lipidomic analyses showed that these LDL-MBApoB100 complexes may be taken up by Kupffer cells and delivered to liver cells and bile acids, greatly inhibiting atherosclerotic plaque growth. More importantly, ultrasound irradiation of these LDL-MBApoB100 complexes that accumulated in the liver may induce acoustic cavitation effects, significantly enhancing the delivery of LDL into liver cells and accelerating their degradation. Our study provides a strategy for decreasing LDL-C levels and inhibiting the progression of atherosclerosis.


Subject(s)
Apolipoprotein B-100 , Lipoproteins, LDL , Liver , Microbubbles , Plaque, Atherosclerotic , Animals , Liver/metabolism , Liver/drug effects , Liver/pathology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice , Lipoproteins, LDL/blood , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/pathology
10.
Sr Care Pharm ; 39(6): 228-234, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38803026

ABSTRACT

Background Recent cardiovascular guideline updates recommend against the use of aspirin for primary prevention of atherosclerotic cardiovascular disease (ASCVD) in older people. However, aspirin use remains common in this population. Objective To implement and evaluate the benefit of a pharmacist-driven aspirin deprescribing protocol compared with primary care provider (PCP) education-only in a primary care setting. Methods This prospective, cohort project targeted deprescribing for patients prescribed aspirin for primary prevention of ASCVD. Patients were included if they received primary care services at the Milwaukee Veterans Health Administration Medical Center (VHA) and were 70 years of age or older. Criteria for exclusion were aspirin obtained outside the VHA system, aspirin prescribed for a non-ASCVD-related condition, and/or a history of ASCVD. Active deprescribing by pharmacists and PCP education took place in the intervention group with PCP education only in the standard-of-care group. The primary outcome was the proportion of patients who had aspirin deprescribed in each group. Secondary outcomes included patient acceptability of the intervention and barriers to implementation. Results A total of 520 patients were prescribed aspirin in the intervention group versus 417 in the education-only group. Sixty-five patients met intervention criteria and were contacted for aspirin deprescribing. The pharmacist-led active deprescribing group led to a higher rate of aspirin deprescriptions versus the education-only group (54% vs 18%; P = 0.0001) for patients who met criteria. Conclusion A pharmacist-led aspirin deprescribing protocol within a primary care setting significantly decreased the number of aspirin prescriptions compared with PCP education only.


Subject(s)
Aspirin , Deprescriptions , Pharmacists , Primary Health Care , Veterans , Humans , Aspirin/therapeutic use , Aspirin/administration & dosage , Aged , Female , Male , Prospective Studies , Aged, 80 and over , Cohort Studies , Primary Prevention/methods , United States , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control
11.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732529

ABSTRACT

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Subject(s)
Angiogenesis Inhibitors , Olive Oil , Phenols , Phenylethyl Alcohol , Olive Oil/chemistry , Humans , Phenols/pharmacology , Angiogenesis Inhibitors/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Diet, Mediterranean , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Cyclopentane Monoterpenes , Neoplasms/prevention & control , Neoplasms/drug therapy , Catechols/pharmacology , Aldehydes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
12.
Arterioscler Thromb Vasc Biol ; 44(6): 1407-1418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695168

ABSTRACT

BACKGROUND: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS: As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS: Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.


Subject(s)
Apolipoprotein A-II , Apolipoprotein A-I , Cholesterol, HDL , Cross-Over Studies , Phosphatidylcholine-Sterol O-Acyltransferase , Recombinant Proteins , Humans , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Male , Apolipoprotein A-I/blood , Middle Aged , Cholesterol, HDL/blood , Apolipoprotein A-II/blood , Female , Cholesterol Esters/blood , Cholesterol Esters/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/enzymology , Atherosclerosis/blood , Apolipoprotein B-100/blood , Aged , Adult , Lipoproteins/blood , Lipoproteins/metabolism
13.
Int Heart J ; 65(3): 548-556, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749748

ABSTRACT

Inflammation plays a pathophysiological role in atherosclerosis and its clinical consequences. In addition to glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are of wide concern for cardioprotective effects. The structure, half-life, homology, and clinical efficacy of GLP-1RAs exhibit remarkable disparity. Several studies have compared the disparities in anti-inflammatory effects between daily and weekly GLP-1RAs. This study aimed to compare the similarities and differences between liraglutide and dulaglutide in terms of inhibiting atherosclerotic inflammation and improving co-cultured endothelial cell function. The expression of inflammation markers was examined by immunofluorescence, Western blotting, and real-time PCR. The tube-forming ability of endothelial cells was tested on Matrigel. The results verify that 10/50/100 nmol/L liraglutide and 100 nmol/L dulaglutide markedly suppressed the expression of inflammatory factors in LPS-induced atherosclerosis after 24 and 72 hours, respectively. Moreover, they promoted the polarization of M1 macrophages toward the M2 phenotype and improved the function of co-cultured endothelial cells. Both liraglutide and dulaglutide ameliorate atherosclerosis development. The difference between the two resided in the extended intervention duration required to observe the effect of dulaglutide, and liraglutide demonstrated a superior dose-dependent manner. We provide a potential strategy to understand the dynamics of drug action and possible timing administration.


Subject(s)
Anti-Inflammatory Agents , Atherosclerosis , Glucagon-Like Peptides , Immunoglobulin Fc Fragments , Liraglutide , Recombinant Fusion Proteins , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Liraglutide/pharmacology , Liraglutide/therapeutic use , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Atherosclerosis/drug therapy , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Cells, Cultured , Coculture Techniques , Human Umbilical Vein Endothelial Cells/drug effects
14.
Discov Med ; 36(184): 1070-1079, 2024 May.
Article in English | MEDLINE | ID: mdl-38798265

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory vascular disease with a complex pathogenesis. Astragaloside IV (AST IV), the primary active component of Astragalus, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. This research aims to investigate the outcome of AST IV on AS and its potential molecular mechanism. METHODS: A high-fat diet (21% fat, 50% carbohydrate, 20% protein, 0.15% cholesterol, and 34% sucrose) was utilized to feed Apolipoprotein E deficient (ApoE-/-) SD rats for 8 weeks, followed by continuous intragastric administration of AST IV for 8 weeks. Biochemical detection was conducted for serum lipid levels and changes in vasoactive substances. After Masson staining, aortic root oil red O staining, and Hematoxylin Eosin (HE) staining, the efficacy of AST IV was verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of inflammatory factors and endothelial dysfunction-related biomarkers in rat aortic root tissues were appraised. The changes in the composition of intestinal flora in rats after AST IV treatment were appraised using Image J (Multi-point Tool). Western blot was used to evaluate phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related protein levels in rat aortic root tissues. RESULTS: AST IV administration alleviated the pathological symptoms of AS rats. AST IV administration reduced serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), endothelin-1 (ET-1) and angiotensin (Ang)-II (Ang-II) levels, and augmented serum high-density lipoprotein cholesterol (HDL-C) and nitric oxide (NO) levels. At the same time, AST IV administration inhibited the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), macrophage inflammatory protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in the aortic root tissue of AS rats. In addition, the intestinal flora changed significantly after AST IV administration. The number of Bifidobacterium, Lactobacillus, and Bacteroides augmented significantly, and Enterobacter, Enterococcus, Fusobacterium, and Clostridium significantly decreased. Mechanistically, AST IV administration inhibited the phosphorylation of PI3K, Akt, and mTOR in AS rats. When combined with Dactolisib (BEZ235) (a PI3K/Akt/mTOR pathway inhibitor), AST IV could further inhibit phosphorylation and reduce inflammation. CONCLUSION: AST IV has a potential anti-AS effect, which can improve the pathological changes of the aorta in ApoE-/- rats fed with a high-fat diet, reduce the level of inflammatory factors, and modulate the composition of intestinal flora via the PI3K/Akt/mTOR pathway.


Subject(s)
Apolipoproteins E , Atherosclerosis , Disease Models, Animal , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Saponins/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Rats , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/administration & dosage , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Gastrointestinal Microbiome/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Apolipoproteins E/genetics , Diet, High-Fat/adverse effects
15.
Int Immunopharmacol ; 134: 112148, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718657

ABSTRACT

BACKGROUND: Vascular inflammation is the key event in early atherogenesis. Pro-inflammatory endothelial cells induce monocyte recruitment into the sub-endothelial layer of the artery. This requires endothelial expression of adhesion molecules namely intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), alongside chemokines production. Christia vespertilionis (L.f.) Bakh.f. (CV) possesses anti-inflammatory property. However, its potential anti-atherogenic effect in the context of vascular inflammation has yet to be explored. PURPOSE: To evaluate the anti-atherogenic mechanism of 80% ethanol extract of CV leaves on tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs). METHODS: Qualitative analysis of the CV extract was carried out by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The cell viability of HUVECs treated with CV extract was determined by MTT assay. The effect of CV extract on monocyte adhesion was determined by monocyte-endothelial adhesion assay. Protein expressions of ICAM-1, VCAM-1 and nuclear factor-kappa B (NF-κB) signaling pathway were determined by western blot while production of monocyte chemoattractant protein-1 (MCP-1) was determined by ELISA. RESULTS: LC-MS/MS analysis showed that CV extract composed of five main compounds, including schaftoside, orientin, isovitexin, 6-caffeoyl-D-glucose, and 3,3'-di-O-methyl ellagic acid. Treatment of CV extract at a concentration range from 5 to 60 µg/mL for 24 h maintained HUVECs viability above 90 %, therefore concentrations of 20, 40 and 60 µg/mL were selected for the subsequent experiments. All concentrations of CV extract showed a significant inhibitory effect on monocyte adhesion to TNF-α-activated HUVECs (p < 0.05). In addition, the protein expressions of ICAM-1 and VCAM-1 were significantly attenuated by CV in a concentration dependent manner (p < 0.001). At all tested concentrations, CV extract also exhibited significant inhibition on the production of MCP-1 (p < 0.05). Moreover, CV extract significantly inhibited TNF-α-induced phosphorylation of inhibitor of nuclear factor-κB kinase alpha/beta (IKKα/ß), inhibitor kappa B-alpha (IκBα), NF-κB and nuclear translocation of NF-κB (p < 0.05). CONCLUSION: CV extract inhibited monocyte adhesion to endothelial cells by suppressing protein expressions of cell adhesion molecules and production of chemokines through downregulation of NF-κB signaling pathway. Thus, CV has the potential to be developed as an anti-atherogenic agent for early treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Human Umbilical Vein Endothelial Cells , Intercellular Adhesion Molecule-1 , Monocytes , NF-kappa B , Plant Extracts , Plant Leaves , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/metabolism , Atherosclerosis/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Monocytes/drug effects , Cell Adhesion/drug effects , Anti-Inflammatory Agents/pharmacology , Ethanol/chemistry , Cells, Cultured , Cell Survival/drug effects , Signal Transduction/drug effects
16.
J Agric Food Chem ; 72(21): 12156-12170, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38755521

ABSTRACT

Atherosclerosis (AS) with iron and lipid overload and systemic inflammation is a risk factor for Alzheimer's disease. M1 macrophage/microglia participate in neuronal pyroptosis and recently have been reported to be the ferroptosis-resistant phenotype. Quercetin plays a prominent role in preventing and treating neuroinflammation, but the protective mechanism against neurodegeneration caused by iron deposition is poorly understood. ApoE-/- mice were fed a high-fat diet with or without quercetin treatment. The Morris water maze and novel object recognition tests were conducted to assess spatial learning and memory, and nonspatial recognition memory, respectively. Prussian blue and immunofluorescence staining were performed to assess the iron levels in the whole brain and in microglia, microglia polarization, and the degree of microglia/neuron ferroptosis. In vitro, we further explored the molecular biological alterations associated with microglial polarization, neuronal pyroptosis, and ferroptosis via Western blot, flow cytometry, CCK8, LDH, propidium iodide, and coculture system. We found that quercetin improved brain lesions and spatial learning and memory in AS mice. Iron deposition in the whole brain or microglia was reversed by the quercetin treatment. In the AS group, the colocalization of iNOS with Iba1 was increased, which was reversed by quercetin. However, the colocalization of iNOS with PTGS2/TfR was not increased in the AS group, suggesting a character resisting ferroptosis. Quercetin induced the expression of Arg-1 and decreased the colocalizations of Arg-1 with PTGS2/TfR. In vitro, ox-LDL combined with ferric ammonium citrate treatment (OF) significantly shifted the microglial M1/M2 phenotype balance and increased the levels of free iron, ROS, and lipid peroxides, which was reversed by quercetin. M1 phenotype induced by OF caused neuronal pyroptosis and was promoted to ferroptosis by L-NIL treatment, which contributed to neuronal ferroptosis as well. However, quercetin induced the M1 to M2 phenotype and inhibited M2 macrophages/microglia and neuron pyroptosis or ferroptosis. In summary, quercetin alleviated neuroinflammation by inducing the M1 to M2 phenotype to inhibit neuronal pyroptosis and protected neurons from ferroptosis, which may provide a new idea for neuroinflammation prevention and treatment.


Subject(s)
Atherosclerosis , Ferroptosis , Mice, Inbred C57BL , Microglia , Neurons , Pyroptosis , Quercetin , Animals , Ferroptosis/drug effects , Quercetin/pharmacology , Pyroptosis/drug effects , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Male , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Humans , Macrophages/drug effects , Macrophages/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism
17.
Biomed Pharmacother ; 175: 116694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713943

ABSTRACT

The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Kaempferols , Non-alcoholic Fatty Liver Disease , Obesity , Humans , Kaempferols/pharmacology , Kaempferols/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Obesity/drug therapy , Obesity/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Signal Transduction/drug effects
18.
Front Immunol ; 15: 1364161, 2024.
Article in English | MEDLINE | ID: mdl-38803504

ABSTRACT

Introduction: Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods: To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results: The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion: Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Glucosides , Hydrolyzable Tannins , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mice , Signal Transduction/drug effects , Inflammasomes/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Male , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout, ApoE
20.
Phytomedicine ; 129: 155662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728917

ABSTRACT

BACKGROUND: Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE: This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS: Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS: Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION: This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Atherosclerosis/drug therapy , Mice , Apolipoproteins E , Mice, Knockout, ApoE , Lipid Metabolism/drug effects , Fatty Acids, Volatile/metabolism , Disease Models, Animal , Capsules , Diet, High-Fat , Simvastatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...