Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.775
Filter
1.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822880

ABSTRACT

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Subject(s)
Dolphins , Endangered Species , Environmental Monitoring , Mercury , Water Pollutants, Chemical , Animals , Mercury/analysis , Mercury/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Atlantic Ocean , Dolphins/metabolism , Liver/metabolism , Kidney/metabolism
2.
PLoS One ; 19(6): e0295098, 2024.
Article in English | MEDLINE | ID: mdl-38837957

ABSTRACT

Artificial light at night (ALAN) is negatively impacting numerous species of nocturnally active birds. Nocturnal positive phototaxis, the movement towards ALAN, is exhibited by many marine birds and can result in stranding on land. Seabird species facing major population declines may be most at risk. Leach's Storm-Petrels (Hydrobates leucorhous) are small, threatened seabirds with an extensive breeding range in the North Atlantic and North Pacific Oceans. The Atlantic population, which represents approximately 40-48% of the global population, is declining sharply. Nocturnal positive phototaxis is considered to be a key contributing factor. The Leach's Storm-Petrel is the seabird species most often found stranded around ALAN in the North Atlantic, though there is little experimental evidence that reduction of ALAN decreases the occurrence of stranded storm-petrels. During a two-year study at a large, brightly illuminated seafood processing plant adjacent to the Leach's Storm-Petrel's largest colony, we compared the number of birds that stranded when the lights at the plant were on versus significantly reduced. We recorded survival, counted carcasses of adults and juveniles, and released any rescued individuals. Daily morning surveys revealed that reducing ALAN decreased strandings by 57.11% (95% CI: 39.29% - 83.01%) per night and night surveys revealed that reducing ALAN decreased stranding of adult birds by 11.94% (95% CI: 3.47% - 41.13%) per night. The peak stranding period occurred from 25 September to 28 October, and 94.9% of the birds found during this period were fledglings. These results provide evidence to support the implementation of widespread reduction and modification of coastal artificial light as a conservation strategy, especially during avian fledging and migration periods.


Subject(s)
Birds , Lighting , Animals , Birds/physiology , Conservation of Natural Resources/methods , Phototaxis , Light , Animal Migration/physiology , Atlantic Ocean
3.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719921

ABSTRACT

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Subject(s)
Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
4.
PLoS One ; 19(5): e0302854, 2024.
Article in English | MEDLINE | ID: mdl-38722950

ABSTRACT

For management efforts to succeed in Caribbean fisheries, local fishers must support and be willing to comply with fishing regulations. This is more likely when fishers are included in a stock assessment process that utilizes robust scientific evidence, collected in collaboration with fishers, to evaluate the health of fish stocks. Caribbean parrotfishes are important contributors to coral reef ecosystem health while also contributing to local fisheries. Scientifically robust stock assessments require regional species-specific information on age-based key life history parameters, derived from fish age estimates. Evaluation of the accuracy of age estimation methods for fish species is a critical initial step in managing species for long-term sustainable harvest. The current study resulted from a collaborative research program between fish biologists and local fishers investigating age, growth, and reproductive biology of the seven parrotfish species landed in U.S. Caribbean fisheries; specifically, we validated age estimation for stoplight parrotfish Sparisoma viride and queen parrotfish Scarus vetula. This is the first study to directly validate age estimation for any parrotfish species through analysis of Δ14C from eye lens cores. Our age estimation validation results show that enumeration of opaque zones from thin sections of sagittal otoliths for a Sparisoma and a Scarus species provides accurate age estimates. The oldest stoplight parrotfish and queen parrotfish in the Δ14C age estimation validation series were 14 y and 16 y; while the oldest stoplight parrotfish and queen parrotfish we aged to-date using the Δ14C validated age estimation method were 20 y and 21 y, respectively. Fish longevity (maximum age attained/life span) is a key life history parameter used for estimation of natural mortality, survivorship, and lifetime reproductive output. Past reviews on parrotfishes from the Pacific and Atlantic concluded that most Caribbean/western Atlantic parrotfish species are relatively short-lived with estimated maximum ages ranging from 3-9 y. However, information from our collaborative research in the U.S. Caribbean combined with recently published age estimates for Brazilian parrotfish species indicate that many western Atlantic parrotfishes are relatively long-lived with several species attaining maximum ages in excess of 20 y.


Subject(s)
Fisheries , Longevity , Animals , Perciformes/growth & development , Perciformes/physiology , Conservation of Natural Resources/methods , Caribbean Region , Radiometric Dating/methods , Atlantic Ocean
5.
Biom J ; 66(4): e2300288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700021

ABSTRACT

We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.


Subject(s)
Tropical Climate , Tuna , Animals , Logistic Models , Atlantic Ocean , Biometry/methods
6.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700436

ABSTRACT

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Subject(s)
Leeches , Microscopy, Electron, Scanning , Phylogeny , Animals , Leeches/classification , Leeches/genetics , Leeches/anatomy & histology , Mexico , Microscopy, Electron, Scanning/veterinary , Pacific Ocean , Atlantic Ocean , DNA, Ribosomal/chemistry , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Gulf of Mexico/epidemiology , Electron Transport Complex IV/genetics , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Sequence Data , Sequence Alignment/veterinary , Likelihood Functions , Fishes/parasitology
7.
PeerJ ; 12: e17355, 2024.
Article in English | MEDLINE | ID: mdl-38708361

ABSTRACT

Three new species of the Microlaimus genus (Nematoda: Microlaimidae) are described from sample sediments collected in the South Atlantic, along the Continental Shelf break of Northeastern Brazil. Microlaimus paraundulatus sp. n. possesses four setiform cephalic sensillae, a buccal cavity with three small teeth, arched and slender spicules and a wave-shaped gubernaculum. Microlaimus modestus sp. n. is characterized by four small cephalic sensillae, a buccal cavity with three teeth (one large dorsal tooth), cephalated spicules and a strongly arched gubernaculum in the distal region. Microlaimus nordestinus sp. n. is characterized by the following set of features: relatively long body, eight rows of hypodermal glands that extend longitudinally along the body and a funnel-shaped gubernaculum surrounding the spicules at the distal end. An amendment of the diagnosis is proposed for the genus.


Subject(s)
Geologic Sediments , Animals , Brazil , Atlantic Ocean , Geologic Sediments/parasitology , Male , Nematoda/classification , Nematoda/anatomy & histology , Nematoda/isolation & purification , Female
8.
Proc Biol Sci ; 291(2023): 20240454, 2024 May.
Article in English | MEDLINE | ID: mdl-38807519

ABSTRACT

Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration.


Subject(s)
Animal Migration , Wind , Animals , Age Factors , Falconiformes/physiology , Flight, Animal , Atlantic Ocean
9.
Nature ; 629(8013): 886-892, 2024 May.
Article in English | MEDLINE | ID: mdl-38720071

ABSTRACT

Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.


Subject(s)
Alteromonadaceae , Ligands , Rhodobacteraceae , Vitamin B 12 , Atlantic Ocean , Coculture Techniques , Microbial Interactions , Prophages/genetics , Prophages/growth & development , Prophages/metabolism , Vitamin B 12/biosynthesis , Vitamin B 12/chemistry , Vitamin B 12/metabolism , Alteromonadaceae/growth & development , Alteromonadaceae/metabolism , Rhodobacteraceae/cytology , Rhodobacteraceae/metabolism , Rhodobacteraceae/virology , Ribonucleosides/metabolism , Cobamides/metabolism , Ecosystem
10.
BMC Genomics ; 25(1): 459, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730342

ABSTRACT

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


Subject(s)
DNA Copy Number Variations , Fishes , Animals , Fishes/genetics , Fishes/immunology , Genetic Variation , Atlantic Ocean , Quantitative Trait Loci , Whole Genome Sequencing
11.
Sci Rep ; 14(1): 11472, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769407

ABSTRACT

Fin whales, Balenoptera physalus, are capital breeders, having the potential to separate breeding and feeding both spatially and temporally. Fin whales occur throughout the Northwest Atlantic, but stock structure and seasonal movements remain unclear. By deploying satellite transmitters on 28 individuals, we examine movement patterns within and beyond the Gulf of St. Lawrence (GSL), Canada, and challenge the current understanding of stock structure. Eight individuals left the GSL in autumn, with five tags persisting into January. Migration patterns of these whales showed considerable variation in timing and trajectory, with movements extending south to 24°N, and thus beyond the assumed distribution limit of the species in the Northwest Atlantic. A rapid return to the Scotian Shelf or Gulf of Maine was observed from several whales after incursions in southern waters, suggesting that fin whales in the Northwest Atlantic may not have a common winter destination that fits the definition of a breeding ground. Area-restricted search (ARS) behavior dominated fin whale activities during summer (92%) and fall (72%), with persistence into the winter (56%); ARS occurred at multiple locations in the GSL, Scotian Shelf and Shelf edge, and near seamounts of the North Atlantic, having characteristics consistent with foraging areas.


Subject(s)
Animal Migration , Fin Whale , Seasons , Animals , Animal Migration/physiology , Fin Whale/physiology , Atlantic Ocean , Canada
12.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739784

ABSTRACT

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Subject(s)
Feathers , Mercury , Animals , Mercury/analysis , Atlantic Ocean , Feathers/chemistry , Arctic Regions , Greenland , Environmental Monitoring/methods , Birds , Food Chain , Water Pollutants, Chemical/analysis , Ecosystem
13.
Environ Sci Pollut Res Int ; 31(24): 35320-35331, 2024 May.
Article in English | MEDLINE | ID: mdl-38730214

ABSTRACT

A multibiomarker approach helps assess environmental health as it provides a complete tool to understand the effects of environmental stressors on ecosystems and human health. We applied this approach in the central Atlantic Ocean of Morocco, an area subjected to the impact of many types of pollutants, threatening the durability of its resources. In this study, four biomarkers acetylcholinesterase (AChE), glutathione-s-transferase (GST), metallothioneins (MTs), and catalase (CAT) were measured in the digestive gland of the mussel Mytilus galloprovincialis collected from four sites: Imsouane (S1), Cap Ghir (S2), Imi Ouaddar (S3), and Douira (S4). These sites were chosen due to the diversity of impacts ranging from industrial to agricultural and touristic. We also assembled all the enzymatic responses (AChE, GST, CAT, and MTs), using the integrated biomarker response (IBR), to estimate the degree of impact of pollutants at the prospected sites to reveal all the complex interactions between biomarkers and to classify sites via the integrated approach. Results show a seasonal change in biomarker responses with variability between sites. We also recorded the highest levels of AChE inhibition and GST induction in S1, higher levels of catalase activity in S4, and a significant impact on metallothionein concentration in S1 and S3. This project highlights the interest in using a multibiomarker approach to ensure accurate interpretation of biomarker variation to protect the Moroccan coast and its resources.


Subject(s)
Acetylcholinesterase , Biomarkers , Catalase , Environmental Monitoring , Glutathione Transferase , Metallothionein , Mytilus , Animals , Morocco , Biomarkers/metabolism , Environmental Monitoring/methods , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Metallothionein/metabolism , Catalase/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis
14.
Mol Ecol ; 33(12): e17385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738821

ABSTRACT

Microbes are thought to be distributed and circulated around the world, but the connection between marine and terrestrial microbiomes remains largely unknown. We use Plantibacter, a representative genus associated with plants, as our research model to investigate the global distribution and adaptation of plant-related bacteria in plant-free environments, particularly in the remote Southern Ocean and the deep Atlantic Ocean. The marine isolates and their plant-associated relatives shared over 98% whole-genome average nucleotide identity (ANI), indicating recent divergence and ongoing speciation from plant-related niches to marine environments. Comparative genomics revealed that the marine strains acquired new genes via horizontal gene transfer from non-Plantibacter species and refined existing genes through positive selection to improve adaptation to new habitats. Meanwhile, marine strains retained the ability to interact with plants, such as modifying root system architecture and promoting germination. Furthermore, Plantibacter species were found to be widely distributed in marine environments, revealing an unrecognized phenomenon that plant-associated microbiomes have colonized the ocean, which could serve as a reservoir for plant growth-promoting microbes. This study demonstrates the presence of an active reservoir of terrestrial plant growth-promoting bacteria in remote marine systems and advances our understanding of the microbial connections between plant-associated and plant-free environments at the genome level.


Subject(s)
Gene Transfer, Horizontal , Plants/microbiology , Plants/genetics , Microbiota/genetics , Phylogeny , Adaptation, Physiological/genetics , Genome, Bacterial/genetics , Ecosystem , Atlantic Ocean , Biological Evolution , Seawater/microbiology
15.
Mar Pollut Bull ; 203: 116400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692002

ABSTRACT

Using seabirds as bioindicators of marine plastic pollution requires an understanding of how the plastic retained in each species compares with that found in their environment. We show that brown skua Catharacta antarctica regurgitated pellets can be used to characterise plastics in four seabird taxa breeding in the central South Atlantic, even though skua pellets might underrepresent the smallest plastic items in their prey. Fregetta storm petrels ingested more thread-like plastics and white-faced storm petrels Pelagodroma marina more industrial pellets than broad-billed prions Pachyptila vittata and great shearwaters Ardenna gravis. Ingested plastic composition (type, colour and polymer) was similar to floating plastics in the region sampled with a 200 µm net, but storm petrels were better indicators of the size of plastics than prions and shearwaters. Given this information, plastics in skua pellets containing the remains of seabirds can be used to track long-term changes in floating marine plastics.


Subject(s)
Environmental Monitoring , Plastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Birds , Charadriiformes , Atlantic Ocean
16.
Mar Pollut Bull ; 203: 116395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703626

ABSTRACT

In 2019, one of Brazil's most significant environmental disasters occurred, involving an oil spill that directly affected Pernambuco state. Contamination along the coast was evaluated by the quantification of polycyclic aromatic hydrocarbons (PAHs) in fifty seawater samples collected in the summer and winter of 2021. Analysis using fluorescence spectroscopy revealed that for all the samples, levels of dissolved/dispersed petroleum hydrocarbons (DDPHs) were higher than the regional baseline for tropical western shores of the Atlantic Ocean. GC-MS analyses quantified 17 PAHs in the samples, with highest total PAHs concentrations of 234 ng L-1 in summer and 33.3 ng L-1 in winter, which were consistent with the highest risks observed in ecotoxicity assays. The use of diagnostic ratios showed that the coast was impacted by a mixture of PAHs from petrogenic and pyrolytic sources. The results indicated the need for continuous monitoring of the regions affected by the 2019 spill.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Brazil , Seawater/chemistry , Water Pollutants, Chemical/analysis , Petroleum/analysis , Atlantic Ocean , Gas Chromatography-Mass Spectrometry
17.
Mar Pollut Bull ; 203: 116442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718547

ABSTRACT

Plastic nurdles pose a significant environmental threat due to recurrent accidental spills into marine ecosystems. This report examines the nurdle pollution over the 1498 km of the Galician coastline (Spain) following the spill of 25 t of nurdles into the Northwest Atlantic after the loss of six containers from the Toconao vessel in December 2023. This accident highlights the urgent need for proactive, effective measures in maritime transport to prevent and mitigate such environmental catastrophes. The complexity of nurdle dispersion challenges the evaluation of their fate at sea, and the potential long-term consequences on the marine ecosystem and food web remain uncertain and yet to be investigated. This report also presents the VIEIRA collaborative and underscores the critical role of citizen-led initiatives in responding to such environmental disasters, and advocates for efficient policy reforms, involving cross-border collaboration. Furthermore, we call for greater international cooperation to underpin effective regulatory frameworks to address the growing hazard of plastic nurdle pollution worldwide.


Subject(s)
Plastics , Water Pollutants, Chemical , Spain , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Ships , Atlantic Ocean
18.
Mar Pollut Bull ; 203: 116469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754322

ABSTRACT

This paper reports the first record of total mercury (THg) concentrations in albacore (Thunnus alalunga), one of the main tuna species caught from the Western Equatorial Atlantic Ocean and presents a preliminary comparison with other regions and tuna species. Mean, standard deviation and range of concentrations in T. alalunga (515 ± 145 ng g-1 ww; 294-930 ng g-1 ww) with 92 % being of methyl-Hg, are higher than in albacore from other Atlantic Ocean subregions despite their smaller body size. These concentrations are similar to those from the Pacific and Indian oceans, but lower than in the Mediterranean. Compared to other sympatric tuna species, concentrations are higher than those in T. albacares and similar to T. obesus. These results are discussed considering the potential differences in stable isotope values (13C and 15N) of T. alalunga populations from multiple oceanic areas and compared to other tuna species worldwide.


Subject(s)
Carbon Isotopes , Environmental Monitoring , Mercury , Nitrogen Isotopes , Tuna , Water Pollutants, Chemical , Animals , Tuna/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis , Mercury/analysis , Mercury/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis
19.
Environ Pollut ; 352: 124133, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754690

ABSTRACT

Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 µm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.


Subject(s)
Environmental Monitoring , Microplastics , Mytilus , Seafood , Water Pollutants, Chemical , Animals , Portugal , Water Pollutants, Chemical/analysis , Microplastics/analysis , Seafood/analysis , Environmental Monitoring/methods , Humans , Mytilus/chemistry , Food Contamination/analysis , Risk Assessment , Bivalvia/chemistry , Dietary Exposure/statistics & numerical data , Atlantic Ocean
20.
Mar Pollut Bull ; 203: 116455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735171

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds ubiquitous in the environment and known for their toxic, mutagenic, and carcinogenic effects. These compounds can bioaccumulate in the biota and be transferred through trophic webs. The franciscana dolphin (Pontoporia blainvillei), as top predators, can be an environmental sentinels. Thus, this study aimed to provide data about PAHs concentration in their hepatic tissue collected on the coast of Espírito Santo (Franciscana Management Area, FMA Ia), Rio de Janeiro (FMA IIa), and São Paulo states (FMA IIb), in Southeastern Brazil. PAHs were detected in 86 % of franciscana dolphins (n = 50). The highest ∑PAHsTotal median concentration was reported in FMA Ia followed by FMA IIb and FMA IIa (1055.6; 523.9, and 72.1 ng.g-1 lipid weight, respectively). Phenanthrene was detected in one fetus and two neonates, showing maternal transfer of PAHs in these dolphins. Evaluating PAHs with potential toxic effects is of utmost importance for the conservation of a threatened species.


Subject(s)
Dolphins , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Dolphins/metabolism , Atlantic Ocean , Brazil , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...