Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 907
Filter
1.
Brain Behav ; 14(6): e3594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849980

ABSTRACT

INTRODUCTION: In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants. METHODS: Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed. Given substantial heterogeneity in both etiology and outcomes in ASD, we utilized both group-level and subject-level analysis approaches to test for signs of atypical intracortical MC as estimated by T1w/T2w ratio. RESULTS: Group-level analyses showed no significant differences in average T1w/T2w ratio or its associations with age between groups, but revealed significant positive main effects of age bilaterally, with T1w/T2w ratio increasing with age across much of the cortex. In subject-level analyses, participants were classified into subgroups based on presence or absence of clusters of aberrant T1w/T2w ratio, and lower neuropsychological function was observed in the ASD subgroup with atypically high T1w/T2w ratio in spatially heterogeneous cortical regions. These differences were observed across several neuropsychological domains, including overall intellectual functioning, processing speed, and aspects of executive function. CONCLUSIONS: The group-level and subject-level approaches employed here demonstrate the value of examining inter-individual variability and provide important preliminary insights into relationships between brain structure and cognition in the second half of the lifespan in ASD, suggesting shared factors contributing to atypical intracortical myelin content and poorer cognitive outcomes for a subset of middle aged to older autistic adults. These atypicalities likely reflect diverse histories of neurodevelopmental deficits, and possible compensatory changes, compounded by processes of aging, and may serve as useful markers of vulnerability to further cognitive decline in older adults with ASD.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Myelin Sheath , Humans , Male , Female , Aged , Middle Aged , Myelin Sheath/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Neuropsychological Tests , Aging/physiology , Aging/pathology
2.
Top Magn Reson Imaging ; 33(3): e0312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836588

ABSTRACT

BACKGROUND: Altered size in the corpus callosum (CC) has been reported in individuals with autism spectrum disorder (ASD), but few studies have investigated younger children. Moreover, knowledge about the age-related changes in CC size in individuals with ASD is limited. OBJECTIVES: Our objective was to investigate the age-related size of the CC and compare them with age-matched healthy controls between the ages of 2 and 18 years. METHODS: Structural-weighted images were acquired in 97 male patients diagnosed with ASD; published data were used for the control group. The CC was segmented into 7 distinct subregions (rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium) as per Witelson's technique using ITK-SNAP software. We calculated both the total length and volume of the CC as well as the length and height of its 7 subregions. The length of the CC measures was studied as both continuous and categorical forms. For the continuous form, Pearson's correlation was used, while categorical forms were based on age ranges reflecting brain expansion during early postnatal years. Differences in CC measures between adjacent age groups in individuals with ASD were assessed using a Student t-test. Mean and standard deviation scores were compared between ASD and control groups using the Welch t-test. RESULTS: Age showed a moderate positive association with the total length of the CC (r = 0.43; Padj = 0.003) among individuals with ASD. Among the subregions, a positive association was observed only in the anterior midbody of the CC (r = 0.41; Padj = 0.01). No association was found between the age and the height of individual subregions or with the total volume of the CC. In comparison with healthy controls, individuals with ASD exhibited shorter lengths and heights of the genu and splenium of the CC across wide age ranges. CONCLUSION: Overall, our results highlight a distinct abnormal developmental trajectory of CC in ASD, particularly in the genu and splenium structures, potentially reflecting underlying pathophysiological mechanisms that warrant further investigation.


Subject(s)
Autism Spectrum Disorder , Corpus Callosum , Magnetic Resonance Imaging , Humans , Male , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Child , Adolescent , Child, Preschool , Female , Image Processing, Computer-Assisted
3.
Hum Brain Mapp ; 45(8): e26750, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853710

ABSTRACT

The triple-network model has been widely applied in neuropsychiatric disorders including autism spectrum disorder (ASD). However, the mechanism of causal regulations within the triple-network and their relations with symptoms of ASD remains unclear. 81 male ASD and 80 well matched typically developing control (TDC) were included in this study, recruited from Autism Brain Image Data Exchange-I datasets. Spatial reference-based independent component analysis was used to identify the anterior and posterior part of default-mode network (aDMN and pDMN), salience network (SN), and bilateral executive-control network (ECN) from resting-state functional magnetic resonance imaging data. Spectral dynamic causal model and parametric empirical Bayes with Bayesian model reduction/average were adopted to explore the effective connectivity (EC) within triple-network and the relationship between EC and autism diagnostic observation schedule (ADOS) scores. After adjusting for age and site effect, ASD and TDC groups both showed inhibition patterns. Compared with TDC, ASD group showed weaker self-inhibition in aDMN and pDMN, stronger inhibition in pDMN→aDMN, weaker inhibition in aDMN→LECN, pDMN→SN, LECN→SN, and LECN→RECN. Furthermore, negative relationships between ADOS scores and pDMN self-inhibition strength, as well as with the EC of pDMN→aDMN were observed in ASD group. The present study reveals imbalanced effective connections within triple-networks in ASD children. More attentions should be focused at the pDMN, which modulates the core symptoms of ASD and may serve as an important region for ASD diagnosis and the target region for ASD treatments.


Subject(s)
Autism Spectrum Disorder , Default Mode Network , Magnetic Resonance Imaging , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Male , Child , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Connectome , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Executive Function/physiology , Adolescent , Bayes Theorem
4.
Sci Rep ; 14(1): 13696, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871844

ABSTRACT

The traditional diagnostic process for autism spectrum disorder (ASD) is subjective, where early and accurate diagnosis significantly affects treatment outcomes and life quality. Thus, improving ASD diagnostic methods is critical. This paper proposes ASD-SWNet, a new shared-weight feature extraction and classification network. It resolves the issue found in previous studies of inefficiently integrating unsupervised and supervised learning, thereby enhancing diagnostic precision. The approach utilizes functional magnetic resonance imaging to improve diagnostic accuracy, featuring an autoencoder (AE) with Gaussian noise for robust feature extraction and a tailored convolutional neural network (CNN) for classification. The shared-weight mechanism utilizes features learned by the AE to initialize the convolutional layer weights of the CNN, thereby integrating AE and CNN for joint training. A novel data augmentation strategy for time-series medical data is also introduced, tackling the problem of small sample sizes. Tested on the ABIDE-I dataset through nested ten-fold cross-validation, the method achieved an accuracy of 76.52% and an AUC of 0.81. This approach surpasses existing methods, showing significant enhancements in diagnostic accuracy and robustness. The contribution of this paper lies not only in proposing new methods for ASD diagnosis but also in offering new approaches for other neurological brain diseases.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/classification , Autism Spectrum Disorder/diagnostic imaging , Magnetic Resonance Imaging/methods , Child , Algorithms
5.
BMC Neurosci ; 25(1): 27, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872076

ABSTRACT

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders that cause people difficulties in social interaction and communication. Identifying ASD patients based on resting-state functional magnetic resonance imaging (rs-fMRI) data is a promising diagnostic tool, but challenging due to the complex and unclear etiology of autism. And it is difficult to effectively identify ASD patients with a single data source (single task). Therefore, to address this challenge, we propose a novel multi-task learning framework for ASD identification based on rs-fMRI data, which can leverage useful information from multiple related tasks to improve the generalization performance of the model. Meanwhile, we adopt an attention mechanism to extract ASD-related features from each rs-fMRI dataset, which can enhance the feature representation and interpretability of the model. The results show that our method outperforms state-of-the-art methods in terms of accuracy, sensitivity and specificity. This work provides a new perspective and solution for ASD identification based on rs-fMRI data using multi-task learning. It also demonstrates the potential and value of machine learning for advancing neuroscience research and clinical practice.


Subject(s)
Autism Spectrum Disorder , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnosis , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Male , Female , Adult , Machine Learning , Young Adult , Child , Adolescent
6.
J Child Neurol ; 39(5-6): 178-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38751192

ABSTRACT

Background: Abnormalities in white matter development may influence development of autism spectrum disorder in tuberous sclerosis complex (TSC). Our goals for this study were as follows: (1) use data from a longitudinal neuroimaging study of tuberous sclerosis complex (TACERN) to develop optimized linear mixed effects models for analyzing longitudinal, repeated diffusion tensor imaging metrics (fractional anisotropy, mean diffusivity) pertaining to select white matter tracts, in relation to positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months, and (2) perform an exploratory analysis using optimized models applied to all white matter tracts from these data. Methods: Eligible participants (3-12 months) underwent brain magnetic resonance imaging (MRI) at repeated time points from ages 3 to 36 months. Positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months was used. Linear mixed effects models were fine-tuned separately for fractional anisotropy values (using fractional anisotropy corpus callosum as test outcome) and mean diffusivity values (using mean diffusivity right posterior limb internal capsule as test outcome). Fixed effects included participant age, within-participant longitudinal age, and autism spectrum disorder diagnosis. Results: Analysis included data from n = 78. After selecting separate optimal models for fractional anisotropy and mean diffusivity values, we applied these models to fractional anisotropy and mean diffusivity of all 27 white matter tracts. Fractional anisotropy corpus callosum was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = 0.0093, P = .0612), and mean diffusivity right inferior cerebellar peduncle was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = -0.00002071, P = .0445), though these findings were not statistically significant after multiple comparisons correction. Conclusion: These optimized linear mixed effects models possibly implicate corpus callosum and cerebellar pathology in development of autism spectrum disorder in tuberous sclerosis complex, but future studies are needed to replicate these findings and explore contributors of heterogeneity in these models.


Subject(s)
Autism Spectrum Disorder , Diffusion Tensor Imaging , Tuberous Sclerosis , White Matter , Humans , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/complications , Tuberous Sclerosis/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Diffusion Tensor Imaging/methods , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Longitudinal Studies , Child, Preschool , Infant , Brain/diagnostic imaging , Brain/pathology , Brain/growth & development , Anisotropy
7.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696597

ABSTRACT

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Subject(s)
Cerebellum , Humans , Cerebellum/pathology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Animals , Autistic Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Purkinje Cells/pathology
8.
Med Image Anal ; 96: 103211, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796945

ABSTRACT

In the medical field, datasets are mostly integrated across sites due to difficult data acquisition and insufficient data at a single site. The domain shift problem caused by the heterogeneous distribution among multi-site data makes autism spectrum disorder (ASD) hard to identify. Recently, domain adaptation has received considerable attention as a promising solution. However, domain adaptation on graph data like brain networks has not been fully studied. It faces two major challenges: (1) complex graph structure; and (2) multiple source domains. To overcome the issues, we propose an end-to-end structure-aware domain adaptation framework for brain network analysis (BrainDAS) using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed approach contains two stages: supervision-guided multi-site graph domain adaptation with dynamic kernel generation and graph classification with attention-based graph pooling. We evaluate our BrainDAS on a public dataset provided by Autism Brain Imaging Data Exchange (ABIDE) which includes 871 subjects from 17 different sites, surpassing state-of-the-art algorithms in several different evaluation settings. Furthermore, our promising results demonstrate the interpretability and generalization of the proposed method. Our code is available at https://github.com/songruoxian/BrainDAS.


Subject(s)
Algorithms , Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Image Processing, Computer-Assisted/methods
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732157

ABSTRACT

Autism Spectrum Disorder (ASD) is an early onset neurodevelopmental disorder characterized by impaired social interaction and communication, and repetitive patterns of behavior. Family studies show that ASD is highly heritable, and hundreds of genes have previously been implicated in the disorder; however, the etiology is still not fully clear. Brain imaging and electroencephalography (EEG) are key techniques that study alterations in brain structure and function. Combined with genetic analysis, these techniques have the potential to help in the clarification of the neurobiological mechanisms contributing to ASD and help in defining novel therapeutic targets. To further understand what is known today regarding the impact of genetic variants in the brain alterations observed in individuals with ASD, a systematic review was carried out using Pubmed and EBSCO databases and following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review shows that specific genetic variants and altered patterns of gene expression in individuals with ASD may have an effect on brain circuits associated with face processing and social cognition, and contribute to excitation-inhibition imbalances and to anomalies in brain volumes.


Subject(s)
Autism Spectrum Disorder , Brain , Neuroimaging , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnostic imaging , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Electroencephalography , Genetic Predisposition to Disease
10.
PLoS One ; 19(5): e0302236, 2024.
Article in English | MEDLINE | ID: mdl-38743688

ABSTRACT

Autism is a representative disorder of pervasive developmental disorder. It exerts influence upon an individual's behavior and performance, potentially co-occurring with other mental illnesses. Consequently, an effective diagnostic approach proves to be invaluable in both therapeutic interventions and the timely provision of medical support. Currently, most scholars' research primarily relies on neuroimaging techniques for auxiliary diagnosis and does not take into account the distinctive features of autism's social impediments. In order to address this deficiency, this paper introduces a novel convolutional neural network-support vector machine model that integrates resting state functional magnetic resonance imaging data with the social responsiveness scale metrics for the diagnostic assessment of autism. We selected 821 subjects containing the social responsiveness scale measure from the publicly available Autism Brain Imaging Data Exchange dataset, including 379 subjects with autism spectrum disorder and 442 typical controls. After preprocessing of fMRI data, we compute the static and dynamic functional connectivity for each subject. Subsequently, convolutional neural networks and attention mechanisms are utilized to extracts their respective features. The extracted features, combined with the social responsiveness scale features, are then employed as novel inputs for the support vector machine to categorize autistic patients and typical controls. The proposed model identifies salient features within the static and dynamic functional connectivity, offering a possible biological foundation for clinical diagnosis. By incorporating the behavioral assessments, the model achieves a remarkable classification accuracy of 94.30%, providing a more reliable support for auxiliary diagnosis.


Subject(s)
Autistic Disorder , Magnetic Resonance Imaging , Neural Networks, Computer , Support Vector Machine , Humans , Magnetic Resonance Imaging/methods , Male , Female , Autistic Disorder/diagnosis , Autistic Disorder/physiopathology , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Adolescent , Child , Adult , Young Adult
11.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696599

ABSTRACT

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Visual Cortex , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Infant , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/growth & development , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Genetic Predisposition to Disease/genetics
12.
Cereb Cortex ; 34(13): 72-83, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696605

ABSTRACT

Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.


Subject(s)
Autism Spectrum Disorder , Brain , Deep Learning , Early Diagnosis , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnosis , Infant , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Child, Preschool , Male , Female , Autistic Disorder/diagnosis , Autistic Disorder/diagnostic imaging , Autistic Disorder/pathology , Unsupervised Machine Learning
13.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696609

ABSTRACT

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Subject(s)
Autism Spectrum Disorder , Brain , Iron , Magnetic Resonance Imaging , Humans , Autism Spectrum Disorder/diagnostic imaging , Male , Female , Child , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/growth & development , Iron/metabolism , Iron/analysis , Child, Preschool , Brain Mapping/methods , White Matter/diagnostic imaging , Globus Pallidus/diagnostic imaging
14.
Cereb Cortex ; 34(13): 172-186, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696606

ABSTRACT

Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.


Subject(s)
Autism Spectrum Disorder , Brain , Facial Recognition , Magnetic Resonance Imaging , Social Perception , Humans , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/psychology , Male , Female , Adult , Young Adult , Facial Recognition/physiology , Brain/physiopathology , Brain/diagnostic imaging , Judgment/physiology , Brain Mapping , Adolescent
15.
Am J Psychiatry ; 181(6): 541-552, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38685858

ABSTRACT

OBJECTIVE: To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS: A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS: After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS: Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/psychology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Female , Male , Neuropsychological Tests/statistics & numerical data
16.
Psychiatry Res Neuroimaging ; 341: 111822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678667

ABSTRACT

Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Male , Magnetic Resonance Imaging/methods , Female , Child , Adolescent , Young Adult , Support Vector Machine , Adult , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology
17.
Dev Cogn Neurosci ; 67: 101379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615557

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition frequently associated with structural cerebellar abnormalities. Whether cerebellar grey matter volumes (GMV) are linked to verbal impairments remains controversial. Here, the association between cerebellar GMV and verbal abilities in ASD was examined across the lifespan. Lobular segmentation of the cerebellum was performed on structural MRI scans from the ABIDE I dataset in male individuals with ASD (N=144, age: 8.5-64.0 years) and neurotypical controls (N=188; age: 8.0-56.2 years). Stepwise linear mixed effects modeling including group (ASD vs. neurotypical controls), lobule-wise GMV, and age was performed to identify cerebellar lobules which best predicted verbal abilities as measured by verbal IQ (VIQ). An age-specific association between VIQ and GMV of bilateral Crus II was found in ASD relative to neurotypical controls. In children with ASD, higher VIQ was associated with larger GMV of left Crus II but smaller GMV of right Crus II. By contrast, in adults with ASD, higher VIQ was associated with smaller GMV of left Crus II and larger GMV of right Crus II. These findings indicate that relative to the contralateral hemisphere, an initial reliance on the language-nonspecific left cerebellar hemisphere is offset by more typical right-lateralization in adulthood.


Subject(s)
Autism Spectrum Disorder , Cerebellum , Gray Matter , Magnetic Resonance Imaging , Humans , Male , Autism Spectrum Disorder/diagnostic imaging , Cerebellum/diagnostic imaging , Gray Matter/pathology , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Child , Adult , Adolescent , Young Adult , Middle Aged , Verbal Behavior/physiology
18.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38615243

ABSTRACT

OBJECTIVE: To investigate the alterations in cortical-cerebellar circuits and assess their diagnostic potential in preschool children with autism spectrum disorder using multimodal magnetic resonance imaging. METHODS: We utilized diffusion basis spectrum imaging approaches, namely DBSI_20 and DBSI_combine, alongside 3D structural imaging to examine 31 autism spectrum disorder diagnosed patients and 30 healthy controls. The participants' brains were segmented into 120 anatomical regions for this analysis, and a multimodal strategy was adopted to assess the brain networks using a multi-kernel support vector machine for classification. RESULTS: The results revealed consensus connections in the cortical-cerebellar and subcortical-cerebellar circuits, notably in the thalamus and basal ganglia. These connections were predominantly positive in the frontoparietal and subcortical pathways, whereas negative consensus connections were mainly observed in frontotemporal and subcortical pathways. Among the models tested, DBSI_20 showed the highest accuracy rate of 86.88%. In addition, further analysis indicated that combining the 3 models resulted in the most effective performance. CONCLUSION: The connectivity network analysis of the multimodal brain data identified significant abnormalities in the cortical-cerebellar circuits in autism spectrum disorder patients. The DBSI_20 model not only provided the highest accuracy but also demonstrated efficiency, suggesting its potential for clinical application in autism spectrum disorder diagnosis.


Subject(s)
Autism Spectrum Disorder , Humans , Child, Preschool , Autism Spectrum Disorder/diagnostic imaging , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Brain
19.
Mol Autism ; 15(1): 16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576034

ABSTRACT

BACKGROUND: This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS: A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS: A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS: The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , Gyrus Cinguli , Magnetic Resonance Imaging/methods
20.
Neuroimage ; 292: 120594, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569980

ABSTRACT

Converging evidence increasingly suggests that psychiatric disorders, such as major depressive disorder (MDD) and autism spectrum disorder (ASD), are not unitary diseases, but rather heterogeneous syndromes that involve diverse, co-occurring symptoms and divergent responses to treatment. This clinical heterogeneity has hindered the progress of precision diagnosis and treatment effectiveness in psychiatric disorders. In this study, we propose BPI-GNN, a new interpretable graph neural network (GNN) framework for analyzing functional magnetic resonance images (fMRI), by leveraging the famed prototype learning. In addition, we introduce a novel generation process of prototype subgraph to discover essential edges of distinct prototypes and employ total correlation (TC) to ensure the independence of distinct prototype subgraph patterns. BPI-GNN can effectively discriminate psychiatric patients and healthy controls (HC), and identify biological meaningful subtypes of psychiatric disorders. We evaluate the performance of BPI-GNN against 11 popular brain network classification methods on three psychiatric datasets and observe that our BPI-GNN always achieves the highest diagnosis accuracy. More importantly, we examine differences in clinical symptom profiles and gene expression profiles among identified subtypes and observe that our identified brain-based subtypes have the clinical relevance. It also discovers the subtype biomarkers that align with current neuro-scientific knowledge.


Subject(s)
Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Adult , Mental Disorders/diagnostic imaging , Mental Disorders/classification , Mental Disorders/diagnosis , Female , Male , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/classification , Young Adult , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...