Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.428
Filter
1.
Circ Res ; 134(12): 1767-1790, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843292

ABSTRACT

Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.


Subject(s)
Autoimmune Diseases , Myocarditis , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/etiology , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/drug therapy , Animals , Autoantibodies/immunology , Autoimmunity , T-Lymphocytes/immunology , Autoantigens/immunology , Cardiac Myosins/immunology
2.
BMJ Case Rep ; 17(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38740443

ABSTRACT

Alport syndrome and autosomal dominant polycystic kidney disease are monogenic causes of chronic kidney disease and end-stage kidney failure. We present a case of a man in his 60s with progressive chronic kidney disease, bilateral sensorineural hearing loss and multiple renal cysts. Genetic analysis revealed a heterozygous variant in COL4A3 (linked to Alport syndrome) and in the GANAB gene (associated with a milder form of autosomal dominant polycystic kidney disease). Although each variant confers a mild risk of developing end-stage kidney disease, the patient presented a pronounced and accelerated progression of chronic kidney disease, which goes beyond what would be predicted by adding up their individual effects. This suggests a potential synergic effect of both variants, which warrants further investigation.


Subject(s)
Collagen Type IV , Nephritis, Hereditary , Polycystic Kidney, Autosomal Dominant , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/complications , Nephritis, Hereditary/diagnosis , Male , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/complications , Collagen Type IV/genetics , Middle Aged , Autoantigens/genetics , Disease Progression , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/etiology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 741-744, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818561

ABSTRACT

OBJECTIVE: To diagnose and explore the genetic etiology of a neonate with Hereditary epidermolysis bullosa. METHODS: A neonate who was admitted to Suqian Hospital Affiliated to Xuzhou Medical University on July 10, 2021 was selected as the study subject. Peripheral blood samples were collected from the child and his parents for the extraction of genomic DNA. And target gene capture and next-generation sequencing were carried out. Candidate variants were verified by Sanger sequencing and pathogenicity analysis. RESULTS: The child was found to harbor compound heterozygous variants of the COL17A1 gene, namely c.997C>T (p.Q333X) and c.3481dupT (p.Y1161fs*2), which were respectively inherited from his father and mother. Both variants were predicted to be pathogenic. CONCLUSION: The child was diagnosed with Generalized atrophic benign epidermolysis bullosa due to the compound heterozygous variants of the COL17A1 gene.


Subject(s)
Collagen Type XVII , Non-Fibrillar Collagens , Humans , Male , Infant, Newborn , Non-Fibrillar Collagens/genetics , Autoantigens/genetics , Mutation , Heterozygote , Epidermolysis Bullosa/genetics , Female
4.
Genes (Basel) ; 15(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790222

ABSTRACT

BACKGROUND: Alport syndrome (AS) is a common and heterogeneous genetic kidney disease, that often leads to end-stage kidney disease (ESKD). METHODS: This is a single-center, retrospective study that included 36 adults with type IV collagen (COL4) mutations. Our main scope was to describe how genetic features influence renal survival. RESULTS: A total of 24 different mutations were identified, of which eight had not been previously described. Mutations affecting each of the type IV collagen α chains were equally prevalent (33.3%). Most of the patients had pathogenic variants (61.1%). Most patients had a family history of kidney disease (71%). The most prevalent clinical picture was nephritic syndrome (64%). One-third of the subjects had extrarenal manifestations, 41.6% of patients had ESKD at referral, and another 8.3% developed ESKD during follow-up. The median renal survival was 42 years (95% CI, 29.98-54.01). The COL4A4 group displayed better renal survival than the COL4A3 group (p = 0.027). Patients with missense variants had higher renal survival (p = 0.023). Hearing loss was associated with lower renal survival (p < 0.001). CONCLUSIONS: Patients with COL4A4 variants and those with missense mutations had significantly better renal survival, whereas those with COL4A3 variants and those with hearing loss had worse prognoses.


Subject(s)
Collagen Type IV , Genetic Association Studies , Kidney Failure, Chronic , Nephritis, Hereditary , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Female , Male , Collagen Type IV/genetics , Adult , Middle Aged , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/pathology , Mutation , Retrospective Studies , Autoantigens
5.
Proc Natl Acad Sci U S A ; 121(23): e2309674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722806

ABSTRACT

The identification of immunogenic peptides has become essential in an increasing number of fields in immunology, ranging from tumor immunotherapy to vaccine development. The nature of the adaptive immune response is shaped by the similarity between foreign and self-protein sequences, a concept extensively applied in numerous studies. Can we precisely define the degree of similarity to self? Furthermore, do we accurately define immune self? In the current work, we aim to unravel the conceptual and mechanistic vagueness hindering the assessment of self-similarity. Accordingly, we demonstrate the remarkably low consistency among commonly employed measures and highlight potential avenues for future research.


Subject(s)
Peptides , Humans , Peptides/immunology , Peptides/chemistry , Adaptive Immunity/immunology , Immunotherapy/methods , Autoantigens/immunology , Animals
7.
Biomol NMR Assign ; 18(1): 111-118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691336

ABSTRACT

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5' terminal oligopyrimidine (5'TOP) mRNAs as well as other mRNAs and binds to both the 5'TOP motif and the 3'-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.


Subject(s)
Amino Acid Motifs , Nuclear Magnetic Resonance, Biomolecular , Humans , Amino Acid Sequence , Autoantigens/chemistry , Autoantigens/metabolism , Nitrogen Isotopes , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , RNA-Binding Proteins
8.
J Autoimmun ; 146: 103245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754236

ABSTRACT

B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.


Subject(s)
Antigens, CD , Antigens, Differentiation, B-Lymphocyte , Autoantibodies , Autoantigens , B-Lymphocytes , Lupus Erythematosus, Systemic , Receptors, Antigen, B-Cell , Ribosomes , Signal Transduction , Animals , Ribosomes/metabolism , Ribosomes/immunology , Mice , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Autoantibodies/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Antigens, Differentiation, B-Lymphocyte/immunology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, CD/metabolism , Antigens, CD/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Signal Transduction/immunology , Autoantigens/immunology , Mice, Knockout , Lymphocyte Activation/immunology , Cell Proliferation , Immune Tolerance , Humans
9.
J Autoimmun ; 146: 103232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692172

ABSTRACT

The link between type I IFN and adaptive immunity, especially T-cell immunity, in JDM still remained largely unclear. This study aimed to understand the effect of elevated type I IFN signaling on CD8+ T cell-associated muscle damage in juvenile dermatomyositis (JDM). This study used flow cytometry (FC) and RT‒PCR were used to examine the circulating cell ratio and type I IFN response. And scRNA-seq was used to examine peripheral immunity in 6 active JDM patients, 3 stable JDM patients, 3 juvenile IMNM patients and 3 age-matched healthy children. In vivo validation experiments were conducted using a mouse model induced by STING agonists and an experimental autoimmune myositis model (EAM). In vitro experiments were conducted using isolated CD8+ T-cells from JDM patients and mice. We found that active JDM patients showed an extensive type I IFN response and a decreased CD8+ T-cell ratio in the periphery (P < 0.05), which was correlated with muscle involvement (P < 0.05). Both new active JDM patients and all active JDM patients showed decreased CD8+ TCM cell ratios compared with age and gender matched stable JDM patients (P < 0.05). Compared with new pediatirc systemic lupus erythematosus (SLE) patients, new active JDM patients displayed decreased CD8+ T-cell and CD8+ TCM cell ratios (P < 0.05). Active JDM patient skeletal muscle biopsies displayed an elevated type I IFN response, upregulated MHC-I expression and CD8+ T-cell infiltration, which was validated in EAM mice. sc-RNAseq demonstrated that type I IFN signalling is the kinetic factor of abnormal differentiation and enhances the cytotoxicity of peripheral CD8+ T cells in active JDM patients, which was confirmed by in vivo and in vitro validation experiments. In summary, the elevated type I IFN signalling affected the differentiation and function of CD8+ T cells in active JDM patients. Skeletal muscle-infiltrating CD8+ T cells might migrate from the periphery under the drive of type I IFN and increased MHC I signals. Therapies targeting autoantigen-specific CD8+ T cells may represent a potential new treatment direction.


Subject(s)
Autoantigens , CD8-Positive T-Lymphocytes , Dermatomyositis , Interferon Type I , Muscle, Skeletal , Signal Transduction , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interferon Type I/metabolism , Animals , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Signal Transduction/immunology , Autoantigens/immunology , Female , Dermatomyositis/immunology , Dermatomyositis/pathology , Dermatomyositis/metabolism , Male , Child , Disease Models, Animal , Adolescent , Child, Preschool
10.
PLoS One ; 19(5): e0287877, 2024.
Article in English | MEDLINE | ID: mdl-38787820

ABSTRACT

Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic ß-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic ß-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of ß-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.


Subject(s)
Autoantigens , Endoplasmic Reticulum-Associated Degradation , Proinsulin , Proteolysis , Ubiquitin-Conjugating Enzymes , Proinsulin/metabolism , Proinsulin/immunology , Proinsulin/genetics , Autoantigens/metabolism , Autoantigens/immunology , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Antigen Presentation/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/immunology
11.
Front Immunol ; 15: 1266349, 2024.
Article in English | MEDLINE | ID: mdl-38605941

ABSTRACT

We have previously argued that the antigen receptors of T and B lymphocytes evolved to be sufficiently specific to avoid massive deletion of clonotypes by negative selection. Their optimal 'specificity' level, i.e., probability of binding any particular epitope, was shown to be inversely related to the number of self-antigens that the cells have to be tolerant to. Experiments have demonstrated that T lymphocytes also become more specific during negative selection in the thymus, because cells expressing the most crossreactive receptors have the highest likelihood of binding a self-antigen, and hence to be tolerized (i.e., deleted, anergized, or diverted into a regulatory T cell phenotype). Thus, there are two -not mutually exclusive- explanations for the exquisite specificity of T cells, one involving evolution and the other thymic selection. To better understand the impact of both, we extend a previously developed mathematical model by allowing for T cells with very different binding probabilities in the pre-selection repertoire. We confirm that negative selection tends to tolerize the most crossreactive clonotypes. As a result, the average level of specificity in the functional post-selection repertoire depends on the number of self-antigens, even if there is no evolutionary optimization of binding probabilities. However, the evolutionary optimal range of binding probabilities in the pre-selection repertoire also depends on the number of self-antigens. Species with more self antigens need more specific pre-selection repertoires to avoid excessive loss of T cells during thymic selection, and hence mount protective immune responses. We conclude that both evolution and negative selection are responsible for the high level of specificity of lymphocytes.


Subject(s)
T-Lymphocytes, Regulatory , Thymus Gland , Autoantigens , B-Lymphocytes , Epitopes
12.
Front Immunol ; 15: 1329013, 2024.
Article in English | MEDLINE | ID: mdl-38665908

ABSTRACT

Introduction: Subgroups of autoantibodies directed against voltage-gated potassium channel (Kv) complex components have been associated with immunotherapy-responsive clinical syndromes. The high prevalence and the role of autoantibodies directly binding Kv remain, however, controversial. Our objective was to determine Kv autoantibody binding requirements and to clarify their contribution to the observed immune response. Methods: Binding epitopes were studied in sera (n = 36) and cerebrospinal fluid (CSF) (n = 12) from a patient cohort positive for Kv1.2 but negative for 32 common neurological autoantigens and controls (sera n = 18 and CSF n = 5) by phospho and deep mutational scans. Autoantibody specificity and contribution to the observed immune response were resolved on recombinant cells, cerebellum slices, and nerve fibers. Results: 83% of the patients (30/36) within the studied cohort shared one out of the two major binding epitopes with Kv1.2-3 reactivity. Eleven percent (4/36) of the serum samples showed no binding. Fingerprinting resolved close to identical sequence requirements for both shared epitopes. Kv autoantibody response is directed against juxtaparanodal regions in peripheral nerves and the axon initial segment in central nervous system neurons and exclusively mediated by the shared epitopes. Discussion: Systematic mapping revealed two shared autoimmune responses, with one dominant Kv1.2-3 autoantibody epitope being unexpectedly prevalent. The conservation of the molecular binding requirements among these patients indicates a uniform autoantibody repertoire with monospecific reactivity. The enhanced sensitivity of the epitope-based (10/12) compared with that of the cell-based detection (7/12) highlights its use for detection. The determined immunodominant epitope is also the primary immune response visible in tissue, suggesting a diagnostic significance and a specific value for routine screening.


Subject(s)
Autoantibodies , Autoimmunity , Immunodominant Epitopes , Kv1.2 Potassium Channel , Humans , Autoantibodies/immunology , Autoantibodies/blood , Kv1.2 Potassium Channel/immunology , Immunodominant Epitopes/immunology , Female , Male , Middle Aged , Adult , Autoantigens/immunology , Epitope Mapping , Animals
13.
Proc Natl Acad Sci U S A ; 121(17): e2304199121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630712

ABSTRACT

Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.


Subject(s)
Aminosalicylic Acids , Arthritis, Rheumatoid , Monocytes , Humans , Protein-Arginine Deiminases , Monocytes/metabolism , Autoantigens , Autoantibodies , Fibrinogen/metabolism , Citrulline/metabolism
14.
Nat Commun ; 15(1): 3114, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600082

ABSTRACT

The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example. We show that each patient harbors a unique and diverse ACPA IgG1 repertoire dominated by only a few antibody clones. In contrast to the total plasma IgG1 antibody repertoire, the ACPA IgG1 sub-repertoire is characterised by an expansion of antibodies that harbor one, two or even more Fab glycans, and different glycovariants of the same clone can be detected. Together, our data indicate that the autoantibody response in a prominent human autoimmune disease is complex, unique to each patient and dominated by a relatively low number of clones.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Humans , Anti-Citrullinated Protein Antibodies , Immunoglobulin G , Autoantigens
15.
Front Immunol ; 15: 1384406, 2024.
Article in English | MEDLINE | ID: mdl-38596681

ABSTRACT

Introduction: The autoimmune response in type 1 diabetes (T1D), in which the beta cells expressing aberrant or modified proteins are killed, resembles an effective antitumor response. Defective ribosomal protein products in tumors are targets of the anti-tumor immune response that is unleashed by immune checkpoint inhibitor (ICI) treatment in cancer patients. We recently described a defective ribosomal product of the insulin gene (INS-DRiP) that is expressed in stressed beta cells and targeted by diabetogenic T cells. T1D patient-derived INS-DRiP specific T cells can kill beta cells and are present in the insulitic lesion. T cells reactive to INS-DRiP epitopes are part of the normal T cell repertoire and are believed to be kept in check by immune regulation without causing autoimmunity. Method: T cell autoreactivity was tested using a combinatorial HLA multimer technology measuring a range of epitopes of islet autoantigens and neoantigen INS-DRiP. INS-DRiP expression in human pancreas and insulinoma sections was tested by immunohistochemistry. Results: Here we report the induction of islet autoimmunity to INS-DRiP and diabetes after ICI treatment and successful tumor remission. Following ICI treatment, T cells of the cancer patient were primed against INS-DRiP among other diabetogenic antigens, while there was no sign of autoimmunity to this neoantigen before ICI treatment. Next, we demonstrated the expression of INS-DRiP as neoantigen in both pancreatic islets and insulinoma by staining with a monoclonal antibody to INS-DRiP. Discussion: These results bridge cancer and T1D as two sides of the same coin and point to neoantigen expression in normal islets and insulinoma that may serve as target of both islet autoimmunity and tumor-related autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Insulinoma , Pancreatic Neoplasms , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Autoimmunity/genetics , Insulinoma/genetics , Insulinoma/therapy , Insulinoma/complications , Autoantigens , Insulin , Epitopes , Immunotherapy/methods
16.
Exp Dermatol ; 33(4): e15058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590080

ABSTRACT

Antibody-secreting cells (ASCs) produce immunoglobulin (Ig) G and IgE autoantibodies in secondary lymphoid organs. Evidence also suggests their existence in the skin in various chronic inflammatory conditions, and in association with CXCL12 and CXCL13, they regulate the recruitment/survival of ASCs and germinal center formation to generate ASCs, respectively. However, the presence of IgG and IgE in bullous pemphigoid (BP) lesions needs to be addressed. Here, we aimed to analyse BP skin for the presence of IgG and IgE and the factors contributing to their generation, recruitment, and persistence. Skin samples from 30 patients with BP were stained to identify ASCs and the immunoglobulin type they expressed. The presence of tertiary lymphoid organ (TLO) elements, which generate ASCs in non-lymphoid tissues, and the chemokines CXCL12 and CXCL13, which regulate the migration/persistence of ASCs in lymphoid tissues and formation of TLOs, respectively, were evaluated in BP skin. BP skin harboured ASCs expressing the two types of antibodies IgG and IgE. ASCs were found in high-grade cellular aggregates containing TLO elements: T cells, B cells, CXCL12+ cells, CXCL13+ cells and high endothelial venules. IgG+ ASCs were detected among these aggregates, whereas IgE+ ASCs were dispersed throughout the dermis. CXCL12+ fibroblast-like cells were located close to ASCs. The inflammatory microenvironment of BP lesions may contribute to the antibody load characteristic of the skin of patients with BP by providing a site for the presence of ASCs. CXCL13 and CXCL12 expression may contribute to the generation and recruitment/survival of ASCs, respectively.


Subject(s)
Pemphigoid, Bullous , Humans , Immunoglobulin E/metabolism , Blister , Autoantibodies/metabolism , Immunoglobulin G/physiology , B-Lymphocytes , Dermis/metabolism , Autoantigens , Non-Fibrillar Collagens
17.
Front Immunol ; 15: 1382236, 2024.
Article in English | MEDLINE | ID: mdl-38571942

ABSTRACT

Immune checkpoint therapies (ICT) have transformed the treatment of cancer over the past decade. However, many patients do not respond or suffer relapses. Successful immunotherapy requires epitope spreading, but the slow or inefficient induction of functional antitumoral immunity delays the benefit to patients or causes resistances. Therefore, understanding the key mechanisms that support epitope spreading is essential to improve immunotherapy. In this review, we highlight the major role played by B-cells in breaking immune tolerance by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that diversify the T-cell response against self-antigens, such as ribonucleoproteins, in autoimmunity but also during successful cancer immunotherapy. This has important implications for the design of future cancer vaccines.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Epitopes , Autoantigens , Autoimmunity , Immunotherapy , Neoplasms/therapy
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673811

ABSTRACT

Despite conventional therapy, lupus nephritis (LN) remains a significant contributor to short- and long-term morbidity and mortality. B cell abnormalities and the production of autoantibodies against nuclear complexes like anti-dsDNA are recognised as key players in the pathogenesis of LN. To address the challenges of chronic immunosuppression associated with current therapies, we have engineered T cells to express chimeric autoantibody receptors (DNA-CAART) for the precise targeting of B cells expressing anti-dsDNA autoantibodies. T cells from LN patients were transduced using six different CAAR vectors based on their antigen specificity, including alpha-actinin, histone-1, heparan sulphate, or C1q. The cytotoxicity, cytokine production, and cell-cell contact of DNA-CAART were thoroughly investigated in co-culture experiments with B cells isolated from patients, both with and without anti-dsDNA positivity. The therapeutic effects were further evaluated using an in vitro immune kidney LN organoid. Among the six proposed DNA-CAART, DNA4 and DNA6 demonstrated superior selectively cytotoxic activity against anti-dsDNA+ B cells. Notably, DNA4-CAART exhibited improvements in organoid morphology, apoptosis, and the inflammatory process in the presence of IFNα-stimulated anti-dsDNA+ B cells. Based on these findings, DNA4-CAART emerge as promising candidates for modulating autoimmunity and represent a novel approach for the treatment of LN.


Subject(s)
Autoantigens , B-Lymphocytes , Lupus Nephritis , T-Lymphocytes , Humans , Lupus Nephritis/immunology , Lupus Nephritis/therapy , Lupus Nephritis/pathology , B-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Autoantigens/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Female , Antibodies, Antinuclear/immunology , Autoantibodies/immunology , Adult , Male , Cytokines/metabolism
19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612581

ABSTRACT

Chronic primary systemic vasculitis (PSV) comprises a group of heterogeneous diseases that are broadly classified by affected blood vessel size, clinical traits and the presence (or absence) of anti-neutrophil cytoplasmic antibodies (ANCA) against proteinase 3 (PR3) and myeloperoxidase (MPO). In small vessel vasculitis (SVV), ANCA are not present in all patients, and they are rarely detected in patients with vasculitis involving medium (MVV) and large (LVV) blood vessels. Some studies have demonstrated that lysosome-associated membrane protein-2 (LAMP-2/CD107b) is a target of ANCA in SVV, but its presence and prognostic value in childhood MVV and LVV is not known. This study utilized retrospective sera and clinical data obtained from 90 children and adolescents with chronic PSV affecting small (SVV, n = 53), medium (MVV, n = 16), and large (LVV, n = 21) blood vessels. LAMP-2-ANCA were measured in time-of-diagnosis sera using a custom electrochemiluminescence assay. The threshold for seropositivity was established in a comparator cohort of patients with systemic autoinflammatory disease. The proportion of LAMP-2-ANCA-seropositive individuals and sera concentrations of LAMP-2-ANCA were assessed for associations with overall and organ-specific disease activity at diagnosis and one-year follow up. This study demonstrated a greater time-of-diagnosis prevalence and sera concentration of LAMP-2-ANCA in MVV (52.9% seropositive) and LVV (76.2%) compared to SVV (45.3%). Further, LAMP-2-ANCA-seropositive individuals had significantly lower overall, but not organ-specific, disease activity at diagnosis. This did not, however, result in a greater reduction in disease activity or the likelihood of achieving inactive disease one-year after diagnosis. The results of this study demonstrate particularly high prevalence and concentration of LAMP-2-ANCA in chronic PSV that affects large blood vessels and is seronegative for traditional ANCA. Our findings invite reconsideration of roles for autoantigens other than MPO and PR3 in pediatric vasculitis, particularly in medium- and large-sized blood vessels.


Subject(s)
Systemic Vasculitis , Adolescent , Child , Humans , Antibodies, Antineutrophil Cytoplasmic , Autoantigens , Myeloblastin , Retrospective Studies
20.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 176-180, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678610

ABSTRACT

Recently, the progression of gastric cancer (GC), as one of the most ordinary malignant tumors, has been reported to be associated with circular RNAs. This study aimed to identify the role of circular RNA_LARP4 in GC. We performed real-time quantitative polymerase chain reaction (RT-qPCR) in 46 paired GC patients and GC cell lines to detect the expression of circular RNA_LARP4. Moreover, the role of circular RNA_LARP4 in GC proliferation was identified through proliferation assay and colony formation assay, while the role of circular RNA_LARP4 in GC metastasis was measured through scratch wound assay and transwell assay. Furthermore, the potential targets of circular RNA_LARP4 were predicted through bioinformatics methods and further identified by western blot assay and RT-qPCR. Circular RNA_LARP4 expression was remarkably lower in GC tissues compared with that in adjacent samples. Besides, cell proliferation of GC was inhibited after overexpression of circular RNA_LARP4, while cell migration and invasion of GC was inhibited after overexpression of circular RNA_LARP4. Furthermore, Upstream frameshift 1 (UPF1) was predicted as the potential target of circular RNA_LARP4 and was upregulated via overexpression of circular RNA_LARP4 in GC. Circular RNA_LARP4 inhibits GC cell proliferation and metastasis via targeting UPF1 in vitro, which might provide a new tumor suppressor in GC development.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , RNA, Circular , Stomach Neoplasms , Female , Humans , Male , Middle Aged , Autoantigens/genetics , Autoantigens/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , RNA/genetics , RNA/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , SS-B Antigen , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...