Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.826
Filter
2.
J Immunol ; 212(12): 1859-1866, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38830147

ABSTRACT

Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.


Subject(s)
Autoimmunity , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Autoimmunity/immunology , Animals , Homeostasis/immunology , Immune Tolerance/immunology , Autoimmune Diseases/immunology , Cell Differentiation/immunology , Cell Plasticity/immunology
3.
Clin Exp Med ; 24(1): 117, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833019

ABSTRACT

To carry out an in-depth analysis of the scientific research on autoimmunity, we performed the first bibliometric analysis focusing on publications in journals dedicated to autoimmunity (JDTA) indexed by science citation index during the period 2004-2023. Using bibliometric analysis, we quantitatively and qualitatively analyzed the country, institution, author, reference and keywords information of publications in JDTA, so as to understand the quantity, publication pattern and publication characteristics of these publications. The co-occurrence networks, clustering map and timeline map were created by CiteSpace and VOSviewer software to visualize the results. The CiteSpace was also used to analyze the strongest citation burst of keywords, which could describe the frequency, intensity and time period of high-frequency keywords, and indicate the research hotspots in the field. A total of 5 710 publications were analyzed, and their annual distribution number was basically stable from 2004 to 2023, fluctuating around 300. The United States and Italy led the way in terms of the number of publications, followed by France and China. For international cooperation, the developed countries represented by the United States cooperate more closely, but the cooperation was localized, reflecting that there was no unified model of autoimmunity among countries. UDICE-French Research Universities had the greatest number of publications. Subsequently, the number of publications decreased slowly with the ranking, and the gradient was not large. Eric Gershwin and Yehuda Shoenfeld stood out among the authors. They had an excellent academic reputation and great influence in the field of autoimmunity. The results of keyword analysis showed that JDTA publications mainly studied a variety of autoimmune diseases, especially SLE and RA. At the same time, JDTA publications also paid special attention to the research of cell function, autoantibody expression, animal experiments, disease activity, pathogenesis and treatment. This study is the first to analyze the publications in JDTA from multiple indicators by bibliometrics, thus providing new insights into the research hotspots and development trends in the field of autoimmunity.


Subject(s)
Autoimmunity , Bibliometrics , Periodicals as Topic , Humans , Biomedical Research/trends , United States , France , China , Italy
4.
Sci Adv ; 10(18): eadn6537, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701219

ABSTRACT

In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.


Subject(s)
Autoimmunity , Macrophages , Toll-Like Receptor 7 , X Chromosome Inactivation , Animals , Female , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmunity/genetics , Mice , Male , Macrophages/metabolism , Macrophages/immunology , RNA, Long Noncoding/genetics , Signal Transduction , Dendritic Cells/immunology , Dendritic Cells/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology
5.
Front Immunol ; 15: 1346671, 2024.
Article in English | MEDLINE | ID: mdl-38698867

ABSTRACT

IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.


Subject(s)
Autoantibodies , Autoimmune Diseases , Autoimmunity , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Animals , Autoantibodies/immunology , B-Lymphocytes/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/therapy
6.
Int J Rheum Dis ; 27(5): e15185, 2024 May.
Article in English | MEDLINE | ID: mdl-38742742

ABSTRACT

OBJECTIVES: This study aimed to unravel the complexities of autoimmune diseases by conducting a comprehensive analysis of gene expression data across 10 conditions, including systemic lupus erythematosus (SLE), psoriasis, Sjögren's syndrome, sclerosis, immune-associated diseases, osteoarthritis, cystic fibrosis, inflammatory bowel disease (IBD), type 1 diabetes, and Guillain-Barré syndrome. METHODS: Gene expression profiles were rigorously examined to identify both upregulated and downregulated genes specific to each autoimmune disease. The study employed visual representation techniques such as heatmaps, volcano plots, and contour-MA plots to provide an intuitive understanding of the complex gene expression patterns in these conditions. RESULTS: Distinct gene expression profiles for each autoimmune condition were uncovered, with psoriasis and osteoarthritis standing out due to a multitude of both upregulated and downregulated genes, indicating intricate molecular interplays in these disorders. Notably, common upregulated and downregulated genes were identified across various autoimmune conditions, with genes like SELENBP1, MMP9, BNC1, and COL1A1 emerging as pivotal players. CONCLUSION: This research contributes valuable insights into the molecular signatures of autoimmune diseases, highlighting the unique gene expression patterns characterizing each condition. The identification of common genes shared among different autoimmune conditions, and their potential role in mitigating the risk of rare diseases in patients with more prevalent conditions, underscores the growing significance of genetics in healthcare and the promising future of personalized medicine.


Subject(s)
Autoimmune Diseases , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Autoimmune Diseases/genetics , Transcriptome , Autoimmunity/genetics , Databases, Genetic , Gene Expression Regulation , Phenotype
7.
Ecotoxicol Environ Saf ; 278: 116452, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744066

ABSTRACT

The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.


Subject(s)
Benzhydryl Compounds , Lupus Erythematosus, Systemic , Phenols , Sulfones , Lupus Erythematosus, Systemic/chemically induced , Phenols/urine , Humans , Benzhydryl Compounds/urine , Female , Adult , Environmental Exposure/statistics & numerical data , Tandem Mass Spectrometry , Environmental Pollutants , Middle Aged , Endocrine Disruptors , Autoimmunity/drug effects , Case-Control Studies , Young Adult
8.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38780621

ABSTRACT

Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.


Subject(s)
Autoimmunity , Animals , Humans , Mice , Autoimmunity/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , DNA Mutational Analysis , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Mutation , Female , Male , Mice, Inbred C57BL , HEK293 Cells , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology
9.
Front Immunol ; 15: 1365554, 2024.
Article in English | MEDLINE | ID: mdl-38765017

ABSTRACT

Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/immunology , Autoimmune Diseases/microbiology , Autoimmune Diseases/immunology , Animals , Dysbiosis/immunology , Autoimmunity
10.
Cell Mol Biol Lett ; 29(1): 76, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762740

ABSTRACT

BACKGROUND: The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS: To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS: The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS: Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.


Subject(s)
Autoimmune Diseases , B-Lymphocytes , CD36 Antigens , Receptors, IgG , Animals , Mice , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmunity , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , CD36 Antigens/metabolism , CD36 Antigens/genetics , Germinal Center/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, IgG/metabolism , Receptors, IgG/genetics
11.
Rev Assoc Med Bras (1992) ; 70(4): e20231490, 2024.
Article in English | MEDLINE | ID: mdl-38716950

ABSTRACT

OBJECTIVE: Various studies have reported that certain long non-coding RNA levels are unusually low in the intestines of celiac disease patients, suggesting that this may be associated with the inflammation observed in celiac disease. Despite these studies, the research aimed at uncovering the potential role of long non-coding RNAs in the pathogenesis of autoimmune diseases like celiac disease remains insufficient. Therefore, in this study, we plan to assess long non-coding RNA polymorphisms associated with autoimmunity in children diagnosed with celiac disease according to the European Society for Paediatric Gastroenterology Hepatology and Nutrition criteria. METHODS: DNA was isolated from paraffin tissue samples of 88 pediatric celiac disease patients and 74 healthy pediatric individuals. Single-nucleotide polymorphism genotyping of five long non-coding RNA polymorphisms associated with autoimmunity (LINC01934-rs1018326, IL18RAP-rs917997, AP002954.4-rs10892258, UQCRC2P1-rs6441961, and HCG14 rs3135316) was conducted using the TaqMan single-nucleotide polymorphism genotyping assays with the LightCycler 480. RESULTS: In our study, the genotypic and allelic frequency distribution of LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms was found to be statistically significant in the comparison between the two groups (p<0.05). According to the multiple genetic model analyses, the LINC01934-rs1018326 polymorphism was observed to confer a 1.14-fold risk in the recessive model and a 1.2-fold risk in the additive model for pediatric celiac disease. Similarly, the AP002954.4-rs10892258 polymorphism was found to pose a 1.40-fold risk in the dominant model and a 1.7-fold risk in the additive model. CONCLUSION: Our study results draw attention to the LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms in celiac disease and suggest that these polymorphisms may be associated with inflammation in autoimmune diseases like celiac disease.


Subject(s)
Autoimmunity , Celiac Disease , Gene Frequency , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Humans , Celiac Disease/genetics , RNA, Long Noncoding/genetics , Case-Control Studies , Child , Polymorphism, Single Nucleotide/genetics , Female , Male , Genetic Predisposition to Disease/genetics , Autoimmunity/genetics , Child, Preschool , Adolescent
12.
Environ Sci Technol ; 58(21): 9082-9090, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743497

ABSTRACT

This prospective birth cohort study evaluated the association of exposure to PM2.5 (diameter ≤2.5 µm), PM1-2.5 (1-2.5 µm), and PM1 (≤1 µm) with maternal thyroid autoimmunity and function during early pregnancy. A total of 15,664 pregnant women were included at 6 to 13+6 gestation weeks in China from 2018 to 2020. Single-pollutant models using generalized linear models (GLMs) showed that each 10 µg/m3 increase in PM2.5 and PM1-2.5 was related with 6% (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.01, 1.12) and 15% (OR = 1.15, 95% CI: 1.08, 1.22) increases in the risk of thyroid autoimmunity, respectively. The odds of thyroid autoimmunity significantly increased with each interquartile range increase in PM2.5 and PM1-2.5 exposure (P for trend <0.001). PM1 exposure was not significantly associated with thyroid autoimmunity. GLM with natural cubic splines demonstrated that increases in PM2.5 and PM1-2.5 exposure were associated with lower maternal FT4 levels, while a negative association between PM1 and FT4 levels was found when exposure exceeded 32.13 µg/m3. Only PM2.5 exposure was positively associated with thyrotropin (TSH) levels. Our findings suggest that high PM exposure is associated with maternal thyroid disruption during the early pregnancy.


Subject(s)
Autoimmunity , Particulate Matter , Thyroid Gland , Humans , Female , Pregnancy , Adult , China , Prospective Studies , Air Pollutants , Maternal Exposure
13.
Sci Immunol ; 9(95): eadj9730, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38728414

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Single-Cell Analysis , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Autoimmunity/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/therapy , Female , Male , Adult , Middle Aged , Central Nervous System/immunology
14.
Front Endocrinol (Lausanne) ; 15: 1377322, 2024.
Article in English | MEDLINE | ID: mdl-38800484

ABSTRACT

Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic ß cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like ß cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Receptors, Antigen, T-Cell , Single-Cell Analysis , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Autoimmunity , Mice
15.
Life Sci ; 348: 122686, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710282

ABSTRACT

Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.


Subject(s)
Autoimmune Diseases , Autoimmunity , Dendritic Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Dendritic Cells/immunology , Dendritic Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Inflammasomes/immunology , Inflammasomes/metabolism , Animals , Autoimmunity/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Communicable Diseases/immunology , Communicable Diseases/metabolism , Communicable Diseases/therapy
17.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731922

ABSTRACT

Autoimmune thyroid disease (AITD) is the most common organic specific illness of the thyroid gland. It may manifest as the overproduction or the decline of thyroxine and triiodothyronine. Hyperthyroidism develops due to the overproduction of hormones as an answer to the presence of stimulatory antibodies against the TSH receptor. Hashimoto's thyroiditis (HT) is generally characterized by the presence of thyroid peroxidase and thyroglobulin antibodies, with a concomitant infiltration of lymphocytes in the thyroid. Due to the progressive destruction of cells, AITD can lead to subclinical or overt hypothyroidism. Pathophysiology of AITD is extremely complicated and still not fully understood, with genetic, environmental and epigenetic factors involved in its development. Due to increasing incidence and social awareness of this pathology, there is an urgent need to expand the background concerning AITD. A growing body of evidence suggests possible ways of treatment apart from traditional approaches. Simultaneously, the role of potential new biomarkers in the diagnosis and monitoring of AITD has been highlighted recently, too. Therefore, we decided to review therapeutic trends in the course of AITD based on its pathophysiological mechanisms, mainly focusing on HT. Another aim was to summarize the state of knowledge regarding the role of new biomarkers in this condition.


Subject(s)
Autoimmunity , Biomarkers , Hashimoto Disease , Thyroid Gland , Humans , Hashimoto Disease/immunology , Hashimoto Disease/therapy , Hashimoto Disease/metabolism , Hashimoto Disease/diagnosis , Thyroid Gland/metabolism , Thyroid Gland/pathology , Autoantibodies/immunology , Animals
18.
Nat Immunol ; 25(5): 743-754, 2024 May.
Article in English | MEDLINE | ID: mdl-38698239

ABSTRACT

Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.


Subject(s)
Autoantibodies , Autoimmunity , Humans , Autoantibodies/immunology , Animals , Cytokines/metabolism , Cytokines/immunology , Neutrophils/immunology , Complement System Proteins/immunology , Autoimmune Diseases/immunology
19.
Front Immunol ; 15: 1377913, 2024.
Article in English | MEDLINE | ID: mdl-38799420

ABSTRACT

Introduction: The atypical chemokine receptor 2 (ACKR2) is a chemokine scavenger receptor, which limits inflammation and organ damage in several experimental disease models including kidney diseases. However, potential roles of ACKR2 in reducing inflammation and tissue injury in autoimmune disorders like systemic lupus erythematosus (SLE) and lupus nephritis are unknown, as well as its effects on systemic autoimmunity. Methods: To characterize functional roles of ACKR2 in SLE, genetic Ackr2 deficiency was introduced into lupus-prone C57BL/6lpr (Ackr2-/- B6lpr) mice. Results: Upon inflammatory stimulation in vitro, secreted chemokine levels increased in Ackr2 deficient tubulointerstitial tissue but not glomeruli. Moreover, Ackr2 expression was induced in kidneys and lungs of female C57BL/6lpr mice developing SLE. However, female Ackr2-/- B6lpr mice at 28 weeks of age showed similar renal functional parameters as wildtype (WT)-B6lpr mice. Consistently, assessment of activity and chronicity indices for lupus nephritis revealed comparable renal injury. Interestingly, Ackr2-/- B6lpr mice showed significantly increased renal infiltrates of CD3+ T and B cells, but not neutrophils, macrophages or dendritic cells, with T cells predominantly accumulating in the tubulointerstitial compartment of Ackr2-/- B6lpr mice. In addition, histology demonstrated significantly increased peribronchial lung infiltrates of CD3+ T cells in Ackr2-/- B6lpr mice. Despite this, protein levels of pro-inflammatory chemokines and mRNA expression of inflammatory mediators were not different in kidneys and lungs of WT- and Ackr2-/- B6lpr mice. This data suggests compensatory mechanisms for sufficient chemokine clearance in Ackr2-deficient B6lpr mice in vivo. Analysis of systemic autoimmune responses revealed comparable levels of circulating lupus-associated autoantibodies and glomerular immunoglobulin deposition in the two genotypes. Interestingly, similar to kidney and lung CD4+ T cell numbers and activation were significantly increased in spleens of Ackr2-deficient B6lpr mice. In lymph nodes of Ackr2-/- B6lpr mice abundance of activated dendritic cells decreased, but CD4+ T cell numbers were comparable to WT. Moreover, increased plasma levels of CCL2 were present in Ackr2-/- B6lpr mice, which may facilitate T cell mobilization into spleens and peripheral organs. Discussion: In summary, we show that ACKR2 prevents expansion of T cells and formation of tertiary lymphoid tissue, but is not essential to limit autoimmune tissue injury in lupus-prone B6lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes , Tertiary Lymphoid Structures , Animals , Mice , Female , Lupus Erythematosus, Systemic/immunology , Tertiary Lymphoid Structures/immunology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Disease Models, Animal , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Autoimmunity , Duffy Blood-Group System/genetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Cell Proliferation , Chemokine Receptor D6
20.
J Cell Mol Med ; 28(10): e18445, 2024 May.
Article in English | MEDLINE | ID: mdl-38801403

ABSTRACT

Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.


Subject(s)
Autoimmune Diseases , Chemokine CCL20 , Chemotaxis , Interleukin-17 , Prostatitis , Th17 Cells , Male , Prostatitis/immunology , Prostatitis/pathology , Prostatitis/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Animals , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , NF-kappa B/metabolism , Signal Transduction , Humans , Mice, Inbred C57BL , Prostate/pathology , Prostate/metabolism , Prostate/immunology , Phosphatidylinositol 3-Kinases/metabolism , Autoimmunity
SELECTION OF CITATIONS
SEARCH DETAIL
...