Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.254
Filter
1.
Ecotoxicol Environ Saf ; 278: 116452, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744066

ABSTRACT

The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.


Subject(s)
Benzhydryl Compounds , Lupus Erythematosus, Systemic , Phenols , Sulfones , Lupus Erythematosus, Systemic/chemically induced , Phenols/urine , Humans , Benzhydryl Compounds/urine , Female , Adult , Environmental Exposure/statistics & numerical data , Tandem Mass Spectrometry , Environmental Pollutants , Middle Aged , Endocrine Disruptors , Autoimmunity/drug effects , Case-Control Studies , Young Adult
2.
Toxicol Sci ; 199(2): 289-300, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38518092

ABSTRACT

Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.


Subject(s)
DNA Methylation , Th1 Cells , Trichloroethylene , Animals , Trichloroethylene/toxicity , DNA Methylation/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Female , Male , Mice , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred MRL lpr , Gene Expression Regulation/drug effects , Interferon-gamma/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/chemically induced , Autoimmune Diseases/genetics , Epigenesis, Genetic/drug effects , Autoimmunity/drug effects
3.
J Neurol ; 271(6): 3279-3290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467790

ABSTRACT

BACKGROUND: The clinical spectrum of melanoma-associated neurological autoimmunity, whether melanoma-associated paraneoplastic neurological syndromes (PNS) or induced by immune checkpoint inhibitors (ICI), is not well characterized. We aim to describe the clinical spectrum of melanoma-associated neurological autoimmunity. METHODS: A systematic review of the literature combined with patients from French databases of paraneoplastic neurological syndromes was conducted. All melanoma patients with a possible immune-mediated neurologic syndrome were included and classified according to whether they had previously been exposed to ICI (ICI-neurotoxicity) or not (ICI-naïve) at first neurological symptoms. RESULTS: Seventy ICI-naïve (literature: n = 61) and 241 ICI-neurotoxicity patients (literature: n = 180) were identified. Neuromuscular manifestations predominated in both groups, but peripheral neuropathies were more frequent in ICI-neurotoxicity patients (39.4% vs 21.4%, p = 0.005) whereas myositis was more frequent in ICI-naïve patients (42.9% vs 18.7%, p < 0.001). ICI-naïve patients had also more frequent central nervous system (CNS) involvement (35.7% vs 23.7%, p = 0.045), classical paraneoplastic syndrome (25.7% vs 5.8%, p < 0.001), and more frequently positive for anti-neuron antibodies (24/32, 75.0% vs 38/90, 42.2%, p = 0.001). Although more ICI-neurotoxicity patients died during the acute phase (22/202, 10.9% vs 1/51, 2.0%, p = 0.047), mostly myositis patients (14/22, 63.6%), mortality during follow-up was higher in ICI-naïve patients (58.5% vs 29.8%, p < 0.001). There was no significant difference in the frequency of life independence (mRS ≤ 2) in the surviving patients in both groups (95.5% vs 91.0%, p = 0.437). CONCLUSIONS: Melanoma-associated PNS appear remarkably rare. The clinical similarities observed in neurological autoimmunity between ICI-treated and ICI-naïve patients, characterized predominantly by demyelinating polyradiculoneuropathy and myositis, suggest a potential prior immunization against melanoma antigens contributing to ICI-related neurotoxicity.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Paraneoplastic Syndromes, Nervous System , Humans , Melanoma/drug therapy , Melanoma/immunology , Immune Checkpoint Inhibitors/adverse effects , Paraneoplastic Syndromes, Nervous System/immunology , Paraneoplastic Syndromes, Nervous System/chemically induced , Autoimmunity/drug effects , Autoimmunity/immunology , Male , Female
4.
Autoimmun Rev ; 23(3): 103509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159894

ABSTRACT

Autoimmunity is a multifaceted disorder influenced by both genetic and environmental factors, and metal exposure has been implicated as a potential catalyst, especially in autoimmune diseases affecting the central nervous system. Notably, metals like mercury, lead, and aluminum exhibit well-established neurotoxic effects, yet the precise mechanisms by which they elicit autoimmune responses in susceptible individuals remain unclear. Recent studies propose that metal-induced autoimmunity may arise from direct toxic effects on immune cells and tissues, coupled with indirect impacts on the gut microbiome and the blood-brain barrier. These effects can activate self-reactive T cells, prompting the production of autoantibodies, inflammatory responses, and tissue damage. Diagnosing metal-induced autoimmunity proves challenging due to nonspecific symptoms and a lack of reliable biomarkers. Treatment typically involves chelation therapy to eliminate excess metals and immunomodulatory agents to suppress autoimmune responses. Prevention strategies include lifestyle adjustments to reduce metal exposure and avoiding occupational and environmental risks. Prognosis is generally favorable with proper treatment; however, untreated cases may lead to autoimmune disorder progression and irreversible organ damage, particularly in the brain. Future research aims to identify genetic and environmental risk factors, enhance diagnostic precision, and explore novel treatment approaches for improved prevention and management of this intricate and debilitating disease.


Subject(s)
Autoimmunity , Metals , Humans , Autoimmunity/drug effects , Autoimmunity/immunology , Metals/adverse effects , Metals/immunology , Nervous System Diseases/immunology , Animals , Autoimmune Diseases/immunology
5.
Nature ; 615(7953): 705-711, 2023 03.
Article in English | MEDLINE | ID: mdl-36922598

ABSTRACT

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Subject(s)
Sucrose , Sweetening Agents , T-Lymphocytes , Animals , Mice , Sucrose/analogs & derivatives , Sweetening Agents/administration & dosage , Sweetening Agents/adverse effects , Sweetening Agents/pharmacology , Sweetening Agents/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Food Safety , Calcium Signaling/drug effects , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Bacterial Infections/immunology , Neoplasms/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
6.
EBioMedicine ; 86: 104343, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371989

ABSTRACT

BACKGROUND: Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS: A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression. FINDINGS: In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12-2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09-3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC. INTERPRETATION: FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols. FUNDING: Medical Research Council, National Institute for Health and Care Research, Versus Arthritis.


Subject(s)
Lupus Erythematosus, Systemic , Receptors, IgG , Rituximab , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Autoimmunity/drug effects , Autoimmunity/genetics , DNA Copy Number Variations , Genotype , Longitudinal Studies , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics , Receptors, IgG/drug effects , Receptors, IgG/genetics , Receptors, IgG/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use
7.
Nat Commun ; 13(1): 452, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064115

ABSTRACT

CD11c+T-bet+ B cells are recognized as an important component of humoral immunity and autoimmunity. These cells can be distinguished from other B cells by their higher expression of the adenosine receptor 2a. Here we address whether A2A receptor activation can affect CD11c+T-bet+ B cells. We show that administration of the A2A receptor agonist CGS-21680 depletes established CD11c+T-bet+ B cells in ehrlichial-infected mice, in a B cell-intrinsic manner. Agonist treatment similarly depletes CD11c+T-bet+ B cells and CD138+ B cells and reduces anti-nuclear antibodies in lupus-prone mice. Agonist treatment is also associated with reduced kidney pathology and lymphadenopathy. Moreover, A2A receptor stimulation depletes pathogenic lymphocytes and ameliorates disease even after disease onset, highlighting the therapeutic potential of this treatment. This study suggests that targeting the adenosine signaling pathway may provide a method for the treatment of lupus and other autoimmune diseases mediated by T-bet+ B cells.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , CD11c Antigen/metabolism , Infections/immunology , Purinergic P1 Receptor Agonists/pharmacology , Receptor, Adenosine A2A/metabolism , T-Box Domain Proteins/metabolism , Animals , Autoimmunity/drug effects , B-Lymphocytes/drug effects , Disease Models, Animal , Ehrlichia , Female , Infections/pathology , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mice, Inbred C57BL
8.
Leukemia ; 36(3): 723-732, 2022 03.
Article in English | MEDLINE | ID: mdl-34743191

ABSTRACT

Several PI3Kδ inhibitors are approved for the therapy of B cell malignancies, but their clinical use has been limited by unpredictable autoimmune toxicity. We have recently reported promising efficacy results in treating chronic lymphocytic leukemia (CLL) patients with combination therapy with the PI3Kδγ inhibitor duvelisib and fludarabine cyclophosphamide rituximab (FCR) chemoimmunotherapy, but approximately one-third of patients develop autoimmune toxicity. We show here that duvelisib FCR treatment in an upfront setting modulates both CD4 and CD8 T cell subsets as well as pro-inflammatory cytokines. Decreases in naive and central memory CD4 T cells and naive CD8 T cells occur with treatment, while activated CD8 T cells, granzyme positive Tregs, and Th17 CD4 and CD8 T cells all increase with treatment, particularly in patients with toxicity. Cytokines associated with Th17 activation (IL-17A and IL-21) are also relatively elevated in patients with toxicity. The only CLL feature associated with toxicity was increased priming for apoptosis at baseline, with a significant decrease during the first week of duvelisib. We conclude that an increase in activated CD8 T cells with activation of Th17 T cells, in the context of lower baseline Tregs and greater CLL resistance to duvelisib, is associated with duvelisib-related autoimmune toxicity.


Subject(s)
Autoimmunity/drug effects , Isoquinolines/adverse effects , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Purines/adverse effects , T-Lymphocytes/drug effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Cytokines/immunology , Humans , Inflammation/chemically induced , Inflammation/immunology , Isoquinolines/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation/drug effects , Middle Aged , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Purines/therapeutic use , Rituximab/adverse effects , Rituximab/therapeutic use , T-Lymphocytes/immunology , Vidarabine/adverse effects , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
9.
J Hepatol ; 76(1): 86-92, 2022 01.
Article in English | MEDLINE | ID: mdl-34487751

ABSTRACT

BACKGROUND & AIMS: Infliximab has been associated with drug-induced liver injury (DILI), particularly drug-induced autoimmune hepatitis (DIAIH). DIAIH is commonly treated with corticosteroids, but there is limited data on the efficacy of corticosteroids in infliximab-induced DILI. METHODS: Patients were included for assessment if they had been treated with infliximab between 2009-2020 in Iceland and had developed elevated liver tests. Other specific etiologies of liver enzyme elevations were excluded. Patients treated with corticosteroids were compared to patients not receiving corticosteroids. RESULTS: A total of 36 patients with infliximab-induced DILI were identified: median age was 46 years (IQR 32-54) and 28 (78%) were female. Type of liver injury was predominantly hepatocellular (64%). Median peak liver enzymes were: alanine aminotransferase (ALT) 393 (328-695) U/L, aspartate aminotransferase 283 (158-564) U/L, alkaline phosphatase 116 (83-205) U/L, and bilirubin (10-20) 13 µmol/L. A total of 25 (69%) were positive for anti-nuclear antibody and/or had elevated IgG. Corticosteroids were initiated in 17 (47%). Median time from onset of liver injury to peak ALT value was longer in patients treated with corticosteroids, 22 (12-59) vs. 0 (0-3) days (p = 0.001). Time from peak ALT to normalization of liver enzymes was 45 days in the corticosteroid group vs. 77 days in others (p = 0.062). Corticosteroids were tapered in all patients, with no cases of relapse during the follow-up period of 1,245 (820-2,698) days. Overall 75% received another biologic, mostly adalimumab, without evidence of liver injury. CONCLUSION: Approximately half of patients with infliximab-induced liver injury had slow improvement in ALT despite cessation of therapy and were treated with corticosteroids. Treatment response was good with prompt resolution of liver test abnormalities. Relapse of liver injury was not observed after tapering of corticosteroids despite prolonged follow-up and no patients developed DILI due to a second biologic. LAY SUMMARY: A rare side effect of infliximab, a biologic medicine used to treat multiple inflammatory diseases, is liver injury and liver inflammation. Steroid treatment has been used in some patients with liver injury caused by infliximab, but there have been few studies supporting this treatment. In this study of 36 patients with infliximab-induced liver injury, approximately half of patients were treated with steroids and the results suggest that patients receiving steroids recover more quickly.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Infliximab/adverse effects , Adrenal Cortex Hormones/therapeutic use , Adult , Autoimmunity/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Female , Humans , Iceland , Infliximab/therapeutic use , Male , Middle Aged , Phenotype
10.
Front Immunol ; 12: 779177, 2021.
Article in English | MEDLINE | ID: mdl-34887866

ABSTRACT

The morbidity and mortality of autoimmune diseases (Ads) have been increasing worldwide, and the identification of novel therapeutic strategies for prevention and treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in the progression of several diseases. SIRT1 also regulates inflammation, oxidative stress, mitochondrial function, immune responses, cellular differentiation, proliferation and metabolism, and its altered functions are likely involved in Ads. Several inhibitors and activators have been shown to affect the development of Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small molecules or natural products that modulate the functions of SIRT1 are potential therapeutic agents. In the present review, we summarize current studies of the biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.


Subject(s)
Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , Enzyme Activators/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Sirtuin 1/antagonists & inhibitors , Adaptive Immunity/drug effects , Animals , Autoimmune Diseases/enzymology , Autoimmune Diseases/immunology , Enzyme Activation , Enzyme Activators/adverse effects , Histone Deacetylase Inhibitors/adverse effects , Humans , Immunity, Innate/drug effects , Molecular Targeted Therapy , Signal Transduction , Sirtuin 1/metabolism
11.
Brain ; 144(10): 3126-3141, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34849598

ABSTRACT

Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.


Subject(s)
Antioxidants/pharmacology , Autoimmunity/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Dimethyl Fumarate/pharmacology , Immunosuppressive Agents/pharmacology , Adult , Animals , Antioxidants/therapeutic use , Autoimmunity/physiology , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Cohort Studies , Dimethyl Fumarate/therapeutic use , Female , Humans , Immunosuppressive Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Young Adult
12.
Neurotherapeutics ; 18(4): 2397-2418, 2021 10.
Article in English | MEDLINE | ID: mdl-34766257

ABSTRACT

In the last 25 years, intravenous immunoglobulin (IVIg) has had a major impact in the successful treatment of previously untreatable or poorly controlled autoimmune neurological disorders. Derived from thousands of healthy donors, IVIg contains IgG1 isotypes of idiotypic antibodies that have the potential to bind pathogenic autoantibodies or cross-react with various antigenic peptides, including proteins conserved among the "common cold"-pre-pandemic coronaviruses; as a result, after IVIg infusions, some of the patients' sera may transiently become positive for various neuronal antibodies, even for anti-SARS-CoV-2, necessitating caution in separating antibodies derived from the infused IVIg or acquired humoral immunity. IVIg exerts multiple effects on the immunoregulatory network by variably affecting autoantibodies, complement activation, FcRn saturation, FcγRIIb receptors, cytokines, and inflammatory mediators. Based on randomized controlled trials, IVIg is approved for the treatment of GBS, CIDP, MMN and dermatomyositis; has been effective in, myasthenia gravis exacerbations, and stiff-person syndrome; and exhibits convincing efficacy in autoimmune epilepsy, neuromyelitis, and autoimmune encephalitis. Recent evidence suggests that polymorphisms in the genes encoding FcRn and FcγRIIB may influence the catabolism of infused IgG or its anti-inflammatory effects, impacting on individualized dosing or efficacy. For chronic maintenance therapy, IVIg and subcutaneous IgG are effective in controlled studies only in CIDP and MMN preventing relapses and axonal loss up to 48 weeks; in practice, however, IVIg is continuously used for years in all the aforementioned neurological conditions, like is a "forever necessary therapy" for maintaining stability, generating challenges on when and how to stop it. Because about 35-40% of patients on chronic therapy do not exhibit objective neurological signs of worsening after stopping IVIg but express subjective symptoms of fatigue, pains, spasms, or a feeling of generalized weakness, a conditioning effect combined with fear that discontinuing chronic therapy may destabilize a multi-year stability status is likely. The dilemmas of continuing chronic therapy, the importance of adjusting dosing and scheduling or periodically stopping IVIg to objectively assess necessity, and concerns in accurately interpreting IVIg-dependency are discussed. Finally, the merit of subcutaneous IgG, the ineffectiveness of IVIg in IgG4-neurological autoimmunities, and genetic factors affecting IVIg dosing and efficacy are addressed.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/therapy , Autoimmunity/immunology , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/immunology , Withholding Treatment , Autoantibodies/drug effects , Autoantibodies/immunology , Autoimmunity/drug effects , COVID-19/immunology , COVID-19/therapy , Dose-Response Relationship, Immunologic , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
13.
Front Immunol ; 12: 760546, 2021.
Article in English | MEDLINE | ID: mdl-34691084

ABSTRACT

Objective: To explore if baseline blood lymphocyte profile could identify relapsing remitting multiple sclerosis (RRMS) patients at higher risk of developing secondary autoimmune adverse events (AIAEs) after alemtuzumab treatment. Methods: Multicenter prospective study including 57 RRMS patients treated with alemtuzumab followed for 3.25 [3.5-4.21] years, (median [interquartile range]). Blood samples were collected at baseline, and leukocyte subsets determined by flow cytometry. We had additional samples one year after the first cycle of alemtuzumab treatment in 39 cases. Results: Twenty-two patients (38.6%) developed AIAEs during follow-up. They had higher B-cell percentages at baseline (p=0.0014), being differences mainly due to plasmablasts/plasma cells (PB/PC, p=0.0011). Those with no AIAEs had higher percentages of CD4+ T cells (p=0.013), mainly due to terminally differentiated (TD) (p=0.034) and effector memory (EM) (p=0.031) phenotypes. AIAEs- patients also showed higher values of TNF-alpha-producing CD8+ T cells (p=0.029). The percentage of PB/PC was the best variable to differentiate both groups of patients. Baseline values >0.10% closely associated with higher AIAE risk (Odds ratio [OR]: 5.91, 95% CI: 1.83-19.10, p=0.004). When excluding the 12 patients with natalizumab, which decreases blood PB/PC percentages, being the last treatment before alemtuzumab, baseline PB/PC >0.1% even predicted more accurately the risk of AIAEs (OR: 11.67, 95% CI: 2.62-51.89, p=0.0007). The AIAEs+ group continued having high percentages of PB/PC after a year of alemtuzumab treatment (p=0.0058). Conclusions: A PB/PC percentage <0.1% at baseline identifies MS patients at low risk of secondary autoimmunity during alemtuzumab treatment.​.


Subject(s)
Alemtuzumab/adverse effects , Autoimmunity/drug effects , B-Lymphocytes/drug effects , Immunosuppressive Agents/adverse effects , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Adult , B-Lymphocytes/immunology , Female , Humans , Male , Middle Aged , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
14.
Front Immunol ; 12: 729602, 2021.
Article in English | MEDLINE | ID: mdl-34630407

ABSTRACT

Objectives: The aim of this study was to investigate anti-synthetase syndrome (ASyS) patients who presented with recurrent episodes of fever and systemic inflammation. Methods: A retrospective cohort of Chinese ASyS patients (n=126) in our center (between January 2013 and January 2020) was included. Patients presenting with concomitant autoimmune rheumatic diseases or malignancies were subsequently excluded. The number of non-infectious fever attacks and attack frequency were recorded and calculated. Patients with two or more attacks and within the upper three quartiles of attack frequency were defined as high-inflammation group. Univariate and multivariate analyses were carried out to characterize the high-inflammation subtype. Results: Out of 113 eligible patients with an average of 5 years follow up, 25 patients were defined as the high-inflammation group (16 for anti-Jo1, 9 for anti-PL7), with an average of 1.12 attack/patient-year. Compared to low-inflammation group (0-1 attack only and a frequency lower than 0.5 attack/patient-year), the high-inflammation group had higher occurrence of fever and rapid progressive interstitial lung disease (RPILD) as the first presentation (84% vs. 21% and 40% vs. 9%, respectively, both p<0.01). Anti-PL-7 was related to the more inflammatory phenotype (p=0.014). Cumulative disease-modifying agent exposures (>=3) were much higher in the high-inflammation group (60% vs. 26%), while biological agents, i.e., rituximab and tocilizumab, showed better "drug survival" for Jo-1+ and PL-7+ ASyS patients with high inflammation, respectively, in our cohort. Conclusions: ASyS with recurrent systemic inflammatory episodes reflects a subtype of more aggressive and refractory disease in the spectrum of ASyS. Increased awareness of this subtype might lead to more appropriate management.


Subject(s)
Amino Acyl-tRNA Synthetases/immunology , Autoantibodies/blood , Autoimmunity , Fever/immunology , Myositis/immunology , Adult , Aged , Autoimmunity/drug effects , Biological Factors/therapeutic use , Biomarkers/blood , China , Female , Fever/diagnosis , Fever/drug therapy , Fever/enzymology , Humans , Immunomodulating Agents/therapeutic use , Male , Middle Aged , Myositis/diagnosis , Myositis/drug therapy , Myositis/enzymology , Recurrence , Retrospective Studies , Time Factors , Treatment Outcome
15.
Front Immunol ; 12: 732992, 2021.
Article in English | MEDLINE | ID: mdl-34675923

ABSTRACT

Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , Dendritic Cells/drug effects , Immune Tolerance/drug effects , Inflammation/drug therapy , Neutrophils/drug effects , Th17 Cells/drug effects , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
16.
Front Endocrinol (Lausanne) ; 12: 746602, 2021.
Article in English | MEDLINE | ID: mdl-34659128

ABSTRACT

Background: Some studies have indicated that interferon (IFN) may be valuable in COVID-19. We aimed to evaluate the impact of short-term IFN on incident thyroid dysfunction and autoimmunity among COVID-19 survivors. Methods: We included consecutive adults without known thyroid disorder admitted to Queen Mary Hospital for COVID-19 from July 2020 to January 2021 who had thyroid function tests (TFTs) and anti-thyroid antibodies measured both on admission and at three months. Results: 226 patients were included (median age 55.0 years; 49.6% men): 135 were IFN-treated. There tended to be more abnormal TFTs upon reassessment in IFN-treated patients (8.1% vs 2.2%, p=0.080). 179 patients (65.4% IFN-treated) had a complete reassessment of anti-thyroid antibodies. There were significant increases in titres of both anti-thyroid peroxidase antibodies (anti-TPO: baseline 29.21 units [IQR: 14.97 - 67.14] vs reassessment 34.30 units [IQR: 18.82 - 94.65], p<0.001) and anti-thyroglobulin antibodies (anti-Tg: baseline 8.23 units [IQR: 5.40 - 18.44] vs reassessment 9.14 units [IQR: 6.83 - 17.17], p=0.001) in the IFN-treated group but not IFN-naïve group. IFN treatment (standardised beta 0.245, p=0.001) was independently associated with changes in anti-TPO titre. Of the 143 patients negative for anti-TPO at baseline, 8 became anti-TPO positive upon reassessment (seven IFN-treated; one IFN-naïve). Incident anti-TPO positivity was more likely to be associated with abnormal TFTs upon reassessment (phi 0.188, p=0.025). Conclusion: IFN for COVID-19 was associated with modest increases in anti-thyroid antibody titres, and a trend of more incident anti-TPO positivity and abnormal TFTs during convalescence. Our findings suggest that clinicians monitor the thyroid function and anti-thyroid antibodies among IFN-treated COVID-19 survivors, and call for further follow-up studies regarding the clinical significance of these changes.


Subject(s)
Autoimmunity/drug effects , COVID-19 Drug Treatment , COVID-19/immunology , Interferon beta-1b/adverse effects , Interferon beta-1b/therapeutic use , Thyroid Diseases/chemically induced , Thyroid Function Tests , Thyroid Gland/drug effects , Adult , Antibodies/analysis , Cohort Studies , Female , Follow-Up Studies , Humans , Immunoglobulins, Thyroid-Stimulating/analysis , Male , Middle Aged , Survivors , Thyroid Diseases/immunology , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
17.
Nat Commun ; 12(1): 6198, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707127

ABSTRACT

Optineurin (OPTN) has important functions in diverse biological processes and diseases, but its effect on dendritic cell (DC) differentiation and functionality remains elusive. Here we show that OPTN is upregulated in human and mouse DC maturation, and that deletion of Optn in mice via CD11c-Cre attenuates DC maturation and impairs the priming of CD4+ T cells, thus ameliorating autoimmune symptoms such as experimental autoimmune encephalomyelitis (EAE). Mechanistically, OPTN binds to the JH1 domain of JAK2 and inhibits JAK2 dimerization and phosphorylation, thereby preventing JAK2-STAT3 interaction and inhibiting STAT3 phosphorylation to suppress downstream transcription of IL-10. Without such a negative regulation, Optn-deficient DCs eventually induce an IL-10/JAK2/STAT3/IL-10 positive feedback loop to suppress DC maturation. Finally, the natural product, Saikosaponin D, is identified as an OPTN inhibitor, effectively inhibiting the immune-stimulatory function of DCs and the disease progression of EAE in mice. Our findings thus highlight a pivotal function of OPTN for the regulation of DC functions and autoimmune disorders.


Subject(s)
Autoimmunity/immunology , Cell Cycle Proteins/metabolism , Dendritic Cells/immunology , Janus Kinase 2/metabolism , Membrane Transport Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Autoimmunity/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Differentiation , Dendritic Cells/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/metabolism , Membrane Transport Proteins/deficiency , Mice , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phosphorylation , Protein Binding , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction
18.
Front Immunol ; 12: 732933, 2021.
Article in English | MEDLINE | ID: mdl-34707607

ABSTRACT

Autoimmune diseases are a broad spectrum of human diseases that are characterized by the breakdown of immune tolerance and the production of autoantibodies. Recently, dysfunction of innate and adaptive immunity is considered to be a key step in the initiation and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect exogenous pathogen irritants and endogenous danger signals. The main function of NLRP3 inflammasome is to promote secretion of interleukin (IL)-1ß and IL-18, and pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive immunity, aberrant activation and regulation of NLRP3 inflammasome plays an important role in the pathogenesis of autoimmune diseases. This paper reviewed the roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3 inflammasome may be a potential target for autoimmune diseases deserved further study.


Subject(s)
Adaptive Immunity , Autoimmune Diseases/immunology , Autoimmunity , Immunity, Innate , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Adaptive Immunity/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Autoimmunity/drug effects , Humans , Immunity, Innate/drug effects , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction
19.
Drugs ; 81(14): 1605-1626, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34609725

ABSTRACT

Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , B-Lymphocytes/drug effects , Clinical Trials as Topic , Humans , Lymphocyte Activation/drug effects , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects
20.
Front Immunol ; 12: 728381, 2021.
Article in English | MEDLINE | ID: mdl-34539667

ABSTRACT

Carcinomas evade the host immune system by negatively modulating CD4+ and CD8+ T effector lymphocytes through forkhead box protein 3 (FOXP3) positive T regulatory cells' increased activity. Furthermore, interaction of the programmed cell death 1 (PD1) molecule and its ligand programmed cell death ligand 1 (PDL1) inhibits the antitumor activity of PD1+ T lymphocytes. Immunotherapy has become a powerful strategy for tailored cancer patients' treatment both in adult and pediatric patients aiming to generate potent antitumor responses. Nevertheless, immunotherapies can generate autoimmune responses. This study aimed to investigate the potential effect of the transformation-related protein 53 (p53) reactivation by a peptide-based inhibitor of the MDM2/MDM4 heterodimer (Pep3) on the immune response in a solid cancer, i.e., thyroid carcinoma frequently presenting with thyroid autoimmunity. In peripheral blood mononuclear cell of thyroid cancer patients, Pep3 treatment alters percentages of CD8+ and CD4+ T regulatory and CD8+ and CD4+ T effector cells and favors an anticancer immune response. Of note that reduced frequencies of activated CD8+ and CD4+ T effector cells do not support autoimmunity progression. In evaluating PD1 expression under p53 activation, a significant decrease of activated CD4+PD1+ cells was detected in thyroid cancer patients, suggesting a defective regulation in the initial activation stage, therefore generating a protective condition toward autoimmune progression.


Subject(s)
Antineoplastic Agents/pharmacology , Autoantibodies/blood , Autoimmunity/drug effects , Leukocytes, Mononuclear/drug effects , Peptides/pharmacology , T-Lymphocytes, Regulatory/drug effects , Thyroid Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Adult , Biomarkers/blood , Case-Control Studies , Cells, Cultured , Female , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...