Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.489
Filter
1.
Sci Rep ; 14(1): 11349, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762532

ABSTRACT

Passive translational acceleration (PTA) has been demonstrated to induce the stress response and regulation of autonomic balance in healthy individuals. Electrodermal activity (EDA) and heart rate variability (HRV) measurements are reliable indicators of the autonomic nervous system (ANS) and can be used to assess stress levels. The objective of this study was to investigate the potential of combining EDA and HRV measurements in assessing the physiological stress response induced by PTA. Fourteen healthy subjects were randomly assigned to two groups of equal size. The experimental group underwent five trials of elevator rides, while the control group received a sham treatment. EDA and HRV indices were obtained via ultra-short-term analysis and compared between the two groups to track changes in the ANS. In addition, the complexity of the EDA time series was compared between the 4 s before and the 2-6 s after the onset of PTA to assess changes in the subjects' stress levels in the experimental group. The results revealed a significant increase in the skin conductance response (SCR) frequency and a decrease in the root mean square of successive differences (RMSSD) and high frequency (HF) components of HRV. In terms of stress assessment, the results showed an increase in the complexity of the EDA time series 2-6 s after the onset of PTA. These results indicate an elevation in sympathetic tone when healthy subjects were exposed to a translational transport scenario. Furthermore, evidence was provided for the ability of EDA complexity to differentiate stress states in individual trials of translational acceleration.


Subject(s)
Autonomic Nervous System , Galvanic Skin Response , Healthy Volunteers , Heart Rate , Stress, Physiological , Adult , Female , Humans , Male , Young Adult , Acceleration , Autonomic Nervous System/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Pilot Projects , Stress, Physiological/physiology
2.
Article in English | MEDLINE | ID: mdl-38780268

ABSTRACT

Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.


Subject(s)
Autonomic Nervous System , Oxytocin , Oxytocin/metabolism , Oxytocin/physiology , Humans , Autonomic Nervous System/physiology , Animals
3.
Physiol Behav ; 281: 114576, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692385

ABSTRACT

Evidence for a key role of dysregulated autonomic nervous system (ANS) activity in maladaptive stress response/recovery and non-communicable disease development is extensive. Monitoring ANS activity via regular heart rate variability (HRV) measurement is growing in popularity in adult populations given that low HRV has been associated with ANS dysregulation, poor stress response/reactivity, increased cardiometabolic disease risk and early mortality. Although cardiometabolic disease may originate in early life, regular HRV measurement for assessing ANS activity in childhood populations, especially those consisting of children < 6 years of age, remains largely unpractised. A greater understanding of ANS activity modifiers in early life may improve analysis and interpretation of HRV measurements, thereby optimising its usefulness. Taking into consideration that HRV and ANS activity can be improved via daily engagement in physical activity (PA), this review will discuss the ANS and HRV, ANS activity modifiers, cardiometabolic disease risk factors and PA as they relate to childhood/adolescent populations (≤ 18 years old).


Subject(s)
Autonomic Nervous System , Cardiometabolic Risk Factors , Exercise , Heart Rate , Humans , Heart Rate/physiology , Exercise/physiology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/physiology , Child , Child, Preschool , Adolescent
4.
Sci Rep ; 14(1): 11198, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755393

ABSTRACT

Variations in the autonomic nervous system activity during exercise therapy in patients with cardiovascular diseases may lead to adverse events. Aromatherapy may reduce these adverse events by enhancing parasympathetic nervous activity (PNA). However, the effects of aromatherapy during exercise remain relatively unknown. This study aimed to evaluate the effect of aromatherapy on autonomic nervous activity during exercise and recovery. This randomized crossover study included 20 healthy men subjected to both aroma and placebo conditions which involved rest and moderate-intensity aerobic exercise on a cycle ergometer, followed by recovery. Blood pressure, heart rate variability indices, and SpO2 were measured during the rest, exercise, and recovery phases. Moreover, aroma preferences and emotional changes in response to the aroma were assessed. Under the placebo condition, high frequency (HF), root mean square of successive differences indices, and heart rate showed delayed recovery (P < 0.05). Furthermore, a moderate positive correlation was identified between aroma preference, pleasant emotions induced by aromatherapy, and the HF index (P < 0.05). These results indicate that aromatherapy facilitates the recovery of PNA after exercise. Furthermore, these effects were more pronounced among individuals who exhibited a stronger preference for and more positive emotions toward aromas.


Subject(s)
Aromatherapy , Autonomic Nervous System , Cross-Over Studies , Exercise , Heart Rate , Humans , Aromatherapy/methods , Male , Exercise/physiology , Autonomic Nervous System/physiology , Heart Rate/physiology , Adult , Young Adult , Blood Pressure/physiology , Odorants
5.
Sci Rep ; 14(1): 11938, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789480

ABSTRACT

Heart rate is under constant autonomic influence but the development of the influence in children is not fully understood. Continuous electrocardiograms were obtained in 1045 healthy school-age children (550 females) during postural provocations with body position changes between supine, sitting, standing, supine, standing, sitting and supine (in this order), 10 min in each position with position changes within 20 s. Heart rate was measured in each position and speed of heart rate changes between positions were assessed by regressions of rates versus timing of individual cardiac cycles. Supine heart rate was gradually decreasing with age: 82.32 ± 9.92, 74.33 ± 9.79, 67.43 ± 9.45 beats per minute (bpm) in tertile age groups < 11, 11-15, > 15 years, respectively (p < 0.0001), with no significant sex difference. Averaged speed of heart rate changes differed little between sexes and age groups but was significantly faster during rate deceleration than acceleration (e.g., supine ↔ standing: 2.99 ± 1.02 vs. 2.57 ± 0.68 bpm/s, p < 0.0001). The study suggests that in children, vagal heart rate control does not noticeably change between ages of approximately 6-19 years. The gradual resting heart rate decrease during childhood and adolescence is likely caused by lowering of cardiac sympathetic influence from sympathetic overdrive in small children to adult-like sympatho-vagal balance in older adolescents.


Subject(s)
Electrocardiography , Heart Rate , Posture , Humans , Heart Rate/physiology , Female , Child , Male , Adolescent , Posture/physiology , Autonomic Nervous System/physiology , Supine Position/physiology , Vagus Nerve/physiology
6.
Cell Rep ; 43(4): 114081, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581682

ABSTRACT

Narratives can synchronize neural and physiological signals between individuals, but the relationship between these signals, and the underlying mechanism, is unclear. We hypothesized a top-down effect of cognition on arousal and predicted that auditory narratives will drive not only brain signals but also peripheral physiological signals. We find that auditory narratives entrained gaze variation, saccade initiation, pupil size, and heart rate. This is consistent with a top-down effect of cognition on autonomic function. We also hypothesized a bottom-up effect, whereby autonomic physiology affects arousal. Controlled breathing affected pupil size, and heart rate was entrained by controlled saccades. Additionally, fluctuations in heart rate preceded fluctuations of pupil size and brain signals. Gaze variation, pupil size, and heart rate were all associated with anterior-central brain signals. Together, these results suggest bidirectional causal effects between peripheral autonomic function and central brain circuits involved in the control of arousal.


Subject(s)
Brain , Heart Rate , Humans , Brain/physiology , Female , Male , Heart Rate/physiology , Adult , Pupil/physiology , Young Adult , Arousal/physiology , Auditory Perception/physiology , Saccades/physiology , Cognition/physiology , Autonomic Nervous System/physiology , Acoustic Stimulation
7.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647323

ABSTRACT

Changes in the mother-offspring relationship are presumably accompanied by dynamic changes in the autonomic nervous system. Although temporal measurements of autonomic activity have been performed in human mothers and infants, the analysis of long-term changes remains unexplored. Mouse mothers can form social bonds with their pups and have a short period of pregnancy and lactation, which makes them useful for the examination of physiological changes from pregnancy to pup-rearing. Therefore, a telemetry system was used for several weeks to measure the changes in the autonomic nervous system and the behavior of mouse mothers. The current results showed that an electrocardiogram (ECG) could be stably recorded regardless of the movements of mothers and parturition. ECG analysis showed that the heart rate gradually decreased from pregnancy to lactation, and sympathetic activity sharply increased as the pups developed. Furthermore, the simultaneous recording of behavior and ECG in the home cage enabled us to understand the behavior-dependent influences on the ECG, thereby revealing the characteristics of autonomic nervous activity during each behavior. Thus, the present experimental method helps to understand how the physiological characteristics of mothers change from pregnancy through pup rearing, supporting the healthy development of pups.


Subject(s)
Behavior, Animal , Electrocardiography , Lactation , Animals , Female , Pregnancy , Mice , Lactation/physiology , Electrocardiography/methods , Behavior, Animal/physiology , Autonomic Nervous System/physiology , Heart Rate/physiology , Telemetry/methods
8.
Menopause ; 31(5): 408-414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38564706

ABSTRACT

OBJECTIVE: We investigated the systemic arterial hypertension effects on cardiovascular autonomic modulation and baroreflex sensitivity (BRS) in women with or without preserved ovarian function. METHODS: A total of 120 women were allocated into two groups: middle-aged premenopausal women (42 ± 3 y old; n = 60) and postmenopausal women (57 ± 4 y old; n = 60). Each group was also divided into two smaller groups (n = 30): normotensive and hypertensive. We evaluated hemodynamic and anthropometric parameters, cardiorespiratory fitness, BRS, heart rate variability (HRV), and blood pressure variability. The effects of hypertension and menopause were assessed using a two-way analysis of variance. Post hoc comparisons were performed using the Student-Newman-Keuls test. RESULTS: Comparing premenopausal groups, women with systemic arterial hypertension showed lower BRS (9.1 ± 4.4 vs 13.4 ± 4.2 ms/mm Hg, P < 0.001 ) and HRV total variance (1,451 ± 955 vs 2,483 ± 1,959 ms 2 , P = 0.005) values than normotensive; however, the vagal predominance still remained. On the other hand, both postmenopausal groups showed an expressive reduction in BRS (8.3 ± 4.2 vs 11.3 ± 4.8 ms/mm Hg, P < 0.001) and HRV characterized by sympathetic modulation predominance (low-frequency oscillations; 56% ± 17 vs 44% ± 17, P < 0.001), in addition to a significant increase in blood pressure variability variance (28.4 ± 14.9 vs 22.4 ± 12.5 mm Hg 2 , P = 0.015) compared with premenopausal groups. Comparing both postmenopausal groups, the hypertensive group had significantly lower values ​​of HRV total variance (635 ± 449 vs 2,053 ± 1,720 ms 2 , P < 0.001) and BRS (5.3 ± 2.8 vs 11.3 ± 3.2 ms/mm Hg) than the normotensive. CONCLUSIONS: Hypertensive middle-aged premenopausal women present HRV autonomic modulation impairment, but they still maintain a vagal predominance. After menopause, even normotensive women show sympathetic autonomic predominance, which may also be associated with aging. Furthermore, postmenopausal women with hypertension present even worse cardiac autonomic modulation.


Subject(s)
Autonomic Nervous System , Baroreflex , Blood Pressure , Heart Rate , Hypertension , Menopause , Postmenopause , Premenopause , Humans , Female , Middle Aged , Hypertension/physiopathology , Adult , Baroreflex/physiology , Heart Rate/physiology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/physiology , Blood Pressure/physiology , Menopause/physiology , Postmenopause/physiology , Premenopause/physiology , Cardiovascular System/physiopathology , Cardiorespiratory Fitness/physiology
9.
Physiol Rep ; 12(7): e16000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584117

ABSTRACT

Few standardized tools are available for evaluation of disorders of consciousness (DOC). The potential of heart rate variability (HRV) during head-up tilt (HUT) test was investigated as a complementary evaluation tool. Twenty-one DOC patients and 21 healthy participants were enrolled in this study comparing clinical characteristics and HRV time- and frequency-domain outcomes and temporal changes during HUT test. During the 1st-5th min of the HUT, DOC group showed a significant increase and decrease in log low frequency (LF) (p = 0.045) and log normalized high frequency (nHF) (p = 0.02), respectively, compared to the supine position and had lower log normalized LF (nLF) (p = 0.004) and log ratio of low-to-high frequency (LF/HF) (p = 0.001) compared to healthy controls. As the HUT continued from the 6th to the 20th min, DOC group exhibited a significant increase in log LF/HF (16th-20th min) (p < 0.05), along with a decrease in log nHF (6th-10th and 16th-20th min) (p < 0.05) and maintained lower log LF, log nLF, and log LF/HF than controls (p < 0.05). 1st-10th min after returning to the supine position, DOC group demonstrated a significant decrease in log nHF (p < 0.01) and increases in log LF/HF (p < 0.01) and had lower log LF (p < 0.01) and log nLF (p < 0.05) compared to controls. In contrast, the control group exhibited a significant decrease in log nHF (p < 0.05) and increase in log LF/HF (p < 0.05) throughout the entire HUT test. Notably, no significant differences were observed when comparing time-domain outcomes reflecting parasympathetic nervous system between the two groups. HRV during HUT test indicated a delayed and attenuated autonomic response, particularly in the sympathetic nervous system, in DOC patients compared with healthy individuals.


Subject(s)
Consciousness Disorders , Sympathetic Nervous System , Humans , Heart Rate/physiology , Tilt-Table Test , Autonomic Nervous System/physiology
10.
Comput Biol Med ; 173: 108335, 2024 May.
Article in English | MEDLINE | ID: mdl-38564855

ABSTRACT

In recent decade, wearable digital devices have shown potentials for the discovery of novel biomarkers of humans' physiology and behavior. Heart rate (HR) and respiration rate (RR) are most crucial bio-signals in humans' digital phenotyping research. HR is a continuous and non-invasive proxy to autonomic nervous system and ample evidence pinpoints the critical role of respiratory modulation of cardiac function. In the present study, we recorded longitudinal (7 days, 4.63 ± 1.52) HR and RR of 89 freely behaving human subjects (Female: 39, age 57.28 ± 5.67, Male: 50, age 58.48 ± 6.32) and analyzed their dynamics using linear models and information theoretic measures. While HR's linear and nonlinear characteristics were expressed within the plane of the HR-RR directed flow of information (HR→RR - RR→HR), their dynamics were determined by its RR→HR axis. More importantly, RR→HR quantified the effect of alcohol consumption on individuals' cardiorespiratory function independent of their consumed amount of alcohol, thereby signifying the presence of this habit in their daily life activities. The present findings provided evidence for the critical role of the respiratory modulation of HR, which was previously only studied in non-human animals. These results can contribute to humans' phenotyping research by presenting RR→HR as a digital diagnosis/prognosis marker of humans' cardiorespiratory pathology.


Subject(s)
Autonomic Nervous System , Respiratory Rate , Humans , Male , Female , Respiratory Rate/physiology , Heart Rate/physiology , Autonomic Nervous System/physiology , Linear Models
11.
J Therm Biol ; 121: 103857, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38663342

ABSTRACT

BACKGROUND: Cryostimulation and cold-water immersion (CWI) have recently gained widespread attention due to their association with changes in cardiovascular and cardiac autonomic control responses. Therefore, the aim of the present systematic review and meta-analysis was to identify the global impact of such cold exposures on cardiovascular and cardiac autonomic activity. METHODS: Three databases (PubMed, Embase, Web-of-Science) were used. Studies were eligible for inclusion if they were conducted on healthy participants using cryostimulation and/or CWI. The outcomes included measurements of blood pressure (BP), heart rate (HR), and heart rate variability (HRV) indices: RR interval (RR), Root mean square of successive RR interval differences (RMSSD), low frequency band (LF), high frequency band (HF), and LF/HF ratio. RESULTS: Among the 27 articles included in our systematic literature review, only 24 were incorporated into the meta-analysis. Our results reveal a significant increase in HRV indices: RMSSD (Standardized mean difference (SMD) = 0.61, p < 0.001), RR (SMD = 0.77, p < 0.001), and HF (SMD = 0.46, p < 0.001), as well as significantly reduced LF (SMD = -0.41, p < 0.001) and LF/HF ratio (SMD = -0.25, p < 0.01), which persisted up to 15 min following cold exposure. Significantly decreased heart rate (SMD = -0.16, p < 0.05), accompanied by slightly increased mean BP (SMD = 0.28, p < 0.001), was also observed. These results seem to depend on individual characteristics and the cooling techniques. CONCLUSION: Our meta-analysis suggests that cryostimulation and/or CWI exposure enhance parasympathetic nervous activity. There is scarce scientific literature regarding the effect of individual characteristics on cold-induced physiological responses.


Subject(s)
Autonomic Nervous System , Cold Temperature , Cryotherapy , Heart Rate , Humans , Autonomic Nervous System/physiology , Cryotherapy/methods , Blood Pressure , Immersion , Heart/physiology
12.
Int J Psychophysiol ; 200: 112343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631542

ABSTRACT

There are many benefits of peer interactions for children's social, emotional, and cognitive development, and isolation from peers may have negative consequences for children. Although biological processes may underlie social withdrawal broadly, distinct patterns may be associated with withdrawal behaviors depending on their underlying motivation (e.g., shy versus disinterested). This study investigated the role of autonomic nervous system activity, as assessed via skin conductance level (SCL) and respiratory sinus arrhythmia (RSA) in predicting changes in unsociability (e.g., lack of interest in peers) and anxious-fearfulness (e.g., discomfort among peers). Data were collected using a community sample of 92 US preschool children (45.7% female; Mage = 45.51 months, SDage = 3.81 months) at two time points one year apart. Gender differences were also explored. Baseline physiology was assessed while viewing a neutral video clip, and reactivity was assessed while viewing social exclusion and post-aggression discussion videos. For all children, coinhibition (i.e., SCL inhibition accompanied by RSA inhibition) to the post-aggression discussion video and blunted SCL activation to the exclusion video were prospectively associated with higher levels of anxious-fearfulness one year later. For boys only, baseline reciprocal sympathetic activation (i.e., SCL activation and RSA inhibition) was prospectively related to higher levels of unsociability one year later. For girls only, RSA inhibition in response to the post-aggression discussion video was prospectively related to higher levels of unsociability one year later. Findings contribute to a growing literature on autonomic reactivity in preschoolers' adjustment and suggest possible differences in the physiological processes underlying unsociability and anxious-fearfulness.


Subject(s)
Anxiety , Autonomic Nervous System , Galvanic Skin Response , Respiratory Sinus Arrhythmia , Humans , Male , Female , Child, Preschool , Respiratory Sinus Arrhythmia/physiology , Galvanic Skin Response/physiology , Anxiety/physiopathology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/physiology , Peer Group , Social Isolation/psychology , Psychological Distance , Fear/physiology , Sex Factors
13.
Auton Neurosci ; 253: 103175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677130

ABSTRACT

Social stress is a major risk factor for comorbid conditions including cardiovascular disease and depression. While women exhibit 2-3× the risk for these stress-related disorders compared to men, the mechanisms underlying heightened stress susceptibility among females remain largely unknown. Due to a lack in understanding of the pathophysiology underlying stress-induced comorbidities among women, there has been a significant challenge in developing effective therapeutics. Recently, a causal role for inflammation has been established in the onset and progression of comorbid cardiovascular disease/depression, with women exhibiting increased sensitivity to stress-induced immune signaling. Importantly, reduced vagal tone is also implicated in stress susceptibility, through a reduction in the vagus nerve's well-recognized anti-inflammatory properties. Thus, examining therapeutic strategies that stabilize vagal tone during stress may shed light on novel targets for promoting stress resilience among women. Recently, accumulating evidence has demonstrated that physical activity exerts cardio- and neuro-protective effects by enhancing vagal tone. Based on this evidence, this mini review provides an overview of comorbid cardiovascular and behavioral dysfunction in females, the role of inflammation in these disorders, how stress may impart its negative effects on the vagus nerve, and how exercise may act as a preventative. Further, we highlight a critical gap in the literature with regard to the study of females in this field. This review also presents novel data that are the first to demonstrate a protective role for voluntary wheel running over vagal tone and biomarkers of cardiac dysfunction in the face of social stress exposure in female rats.


Subject(s)
Autonomic Nervous System , Stress, Psychological , Vagus Nerve , Animals , Stress, Psychological/physiopathology , Vagus Nerve/physiology , Female , Autonomic Nervous System/physiopathology , Autonomic Nervous System/physiology , Humans , Resilience, Psychological , Physical Conditioning, Animal/physiology
14.
Front Public Health ; 12: 1387056, 2024.
Article in English | MEDLINE | ID: mdl-38638471

ABSTRACT

Background: Previous physiology-driven pain studies focused on examining the presence or intensity of physical pain. However, people experience various types of pain, including social pain, which induces negative mood; emotional distress; and neural activities associated with physical pain. In particular, comparison of autonomic nervous system (ANS) responses between social and physical pain in healthy adults has not been well demonstrated. Methods: We explored the ANS responses induced by two types of pain-social pain, associated with a loss of social ties; and physical pain, caused by a pressure cuff-based on multimodal physiological signals. Seventy-three healthy individuals (46 women; mean age = 20.67 ± 3.27 years) participated. Behavioral responses were assessed to determine their sensitivity to pain stimuli. Electrocardiogram, electrodermal activity, photoplethysmogram, respiration, and finger temperature (FT) were measured, and 12 features were extracted from these signals. Results: Social pain induced increased heart rate (HR) and skin conductance (SC) and decreased blood volume pulse (BVP), pulse transit time (PTT), respiration rate (RR), and FT, suggesting a heterogeneous pattern of sympathetic-parasympathetic coactivation. Moreover, physical pain induced increased heart rate variability (HRV) and SC, decreased BVP and PTT, and resulted in no change in FT, indicating sympathetic-adrenal-medullary activation and peripheral vasoconstriction. Conclusion: These results suggest that changes in HR, HRV indices, RR, and FT can serve as markers for differentiating physiological responses to social and physical pain stimuli.


Subject(s)
Autonomic Nervous System , Pain , Adult , Humans , Female , Adolescent , Young Adult , Healthy Volunteers , Autonomic Nervous System/physiology , Emotions/physiology , Electrocardiography
16.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 179-182, 2024.
Article in English | MEDLINE | ID: mdl-38684389

ABSTRACT

Evaluating the autonomic nervous system (ANS) via heart rate variability (HRV) to investigate the effects of food on human health has attracted attention. However, using a conventional HRV analysis via the fast Fourier transform (FFT), it is difficult to remove artifacts such as body movements and/or abnormal physiological responses (unexpected events) from the HRV analysis results. In this study, an analysis combining bandpass filters and the Hilbert transform was applied to HRV data on functional food intake to compare with FFT analysis. HRV data were obtained from six males by recording electrocardiograms on functional food, γ-aminobutyric acid, intake. HRV indices were calculated by both analysis. In the Hilbert analysis, all HRV indices were obtained for the same number of sampling points as the HRV data. The standard errors of all HRV indices tended to be smaller in the Hilbert analysis than in the FFT analysis. In conclusion, the Hilbert analysis was more suitable than FFT analysis for evaluating ANS via HRV on functional foods intake.


Subject(s)
Autonomic Nervous System , Fourier Analysis , Functional Food , Heart Rate , Humans , Male , Autonomic Nervous System/physiology , Heart Rate/physiology , Electrocardiography/methods , Adult , Young Adult , gamma-Aminobutyric Acid
17.
Appl Psychophysiol Biofeedback ; 49(2): 261-269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453731

ABSTRACT

The negative impact of loneliness on the health of the elderly is particularly noticeable because of the effects of central control on the autonomic nervous system. Such an impact can be assessed through heart rate variability (HRV) analysis and can be modified using HRV biofeedback training. This study aimed to investigate the impact of different levels of social interaction reported by the elderly on HRV before and after training with HRV biofeedback and after a follow-up period. The participants of this pilot study comprised 16 elderly people of both sexes with a mean age of 71.20 ± 4.92 years. The participants were divided into two groups, the loneliness group (N = 8) and the no-loneliness group (N = 8), based on a combination of both criteria: the institutionalization condition (institutionalized or not) and the score on the loneliness scale (high or low). All participants had their HRV components recorded at baseline, after 14 training sessions with HRV biofeedback (three times a week, 15 min each for 4.5 weeks), and after 4.5 weeks of follow-up without training. After HRV biofeedback training, HRV components increased in both groups. However, the gains lasted at follow-up only in the no-loneliness group. In conclusion, loneliness can influence the maintenance of HRV after interruption of training with HRV biofeedback in the elderly. HRV biofeedback training can be an innovative and effective tool for complementary treatment of elderly individuals, but its effects on lonely elderly individuals need to be further investigated.


Subject(s)
Biofeedback, Psychology , Heart Rate , Loneliness , Humans , Male , Female , Pilot Projects , Heart Rate/physiology , Aged , Biofeedback, Psychology/physiology , Loneliness/psychology , Autonomic Nervous System/physiology , Social Interaction
18.
Animal ; 18(4): 101114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471266

ABSTRACT

Cooling down is essential for horse recovery before veterinary inspection during an endurance ride. As salt potentially decreases water temperature, we tested whether adding salt to the water used to cool horses could aid their recovery. Twelve healthy Arabian horses participating in a novice endurance ride were divided evenly into two groups. Heart rate variability (HRV) variables, including time and frequency domains, non-linear results, and autonomic nervous system indices, were determined before recovery and at 1-min intervals for 9 min during recovery using either cold or cold-saline water. An interaction between water type and time was observed in the modulation of the SD of beat-to-beat (RR) intervals, square root of the mean squared differences between successive RR intervals (RMSSD), HRV triangular index, very low-frequency band (VLF), low-frequency band/high-frequency band ratio, and SD of the Poincaré plot perpendicular to the line of identity (SD1) non-linear results. A decrease in heart rate and the sympathetic nervous system index corresponding to an increase in RR intervals and the parasympathetic nervous system (PNS) index was observed over time. A rise in the triangular interpolation of the normal-to-normal intervals, number of successive RR interval pairs that differ more than 50 ms, low-frequency band, and total power, coinciding with decreased stress index, was detected at 9 min of recovery. A difference between RMSSD and SD1 was observed between groups, in which they were higher in horses cooling with cold-saline water when compared to cold water at 5 min after cooling began. An increase in VLF was seen at 9 min only in horses cooled with cold-saline water. In conclusion, different water types distinctly impacted HRV in horses. The predominant PNS activity in horses recovering with cold-saline water reflects its positive impact on cooling during an endurance ride.


Subject(s)
Autonomic Nervous System , Cold Temperature , Syndactyly , Horses , Animals , Autonomic Nervous System/physiology , Heart Rate/physiology
19.
Physiol Behav ; 279: 114527, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38527577

ABSTRACT

The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/therapy , Heart , Autonomic Nervous System/physiology , Sympathetic Nervous System , Heart Rate/physiology
20.
Adv Physiol Educ ; 48(2): 414-420, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38545642

ABSTRACT

Medical students face challenging but important topics they must learn in short periods of time, such as autonomic pharmacology. Autonomic pharmacology is difficult in that it requires students to synthesize detailed anatomy, physiology, clinical reasoning, and pharmacology. The subject poses a challenge to learn as it is often introduced early in medical school curricula. To ease the difficulty of learning autonomic pharmacology, we created a free web application, PharmaMemory (www.pharmamemory.com), that interactively depicts the effects of high-yield autonomic drugs on the human body. PharmaMemory provides users with the opportunity to read and quiz themselves on the mechanisms, side effects, indications, and contraindications of these drugs while interacting with the application. We provided PharmaMemory to first-year medical students for three consecutive years of quality improvement and assessed the application's perceived effects on learning via user surveys. Survey feedback showed that users viewed PharmaMemory favorably and self-reported increased knowledge and confidence in the subject of autonomic pharmacology. Comments revealed that users liked the website's visuals, opportunity for challenged recall, and conciseness. PharmaMemory utilizes challenged recall, visual stimulation, and interactive learning to provide users with a multifaceted learning tool. Preliminary data suggest that students find this method of learning beneficial. Further studies are needed to assess PharmaMemory compared with more traditional learning methods such as PowerPoint or text-based learning. Additionally, further research is needed to quantitatively assess reduction in cognitive load.NEW & NOTEWORTHY PharmaMemory (www.pharmamemory.com) is a free web application that interactively depicts the effects of high-yield autonomic drugs on the human body.


Subject(s)
Internet , Pharmacology , Physiology , Humans , Pharmacology/education , Physiology/education , Autonomic Nervous System/physiology , Autonomic Nervous System/drug effects , Students, Medical , Computer-Assisted Instruction/methods , Education, Medical, Undergraduate/methods , Curriculum , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...