Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.442
Filter
1.
Parasitol Res ; 123(5): 217, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772951

ABSTRACT

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Subject(s)
Autophagy , Oils, Volatile , Origanum , Reactive Oxygen Species , Toxoplasma , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Origanum/chemistry , Humans , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Necrosis/drug therapy , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
2.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Article in English | MEDLINE | ID: mdl-38773797

ABSTRACT

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Osteoporosis , Oxidative Stress , Animals , Autophagy/drug effects , Oxidative Stress/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Rats, Sprague-Dawley , Streptozocin , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Bone Density/drug effects
3.
FASEB J ; 38(10): e23677, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775792

ABSTRACT

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Subject(s)
Artemisinins , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , NF-E2-Related Factor 2 , Artemisinins/pharmacology , Animals , NF-E2-Related Factor 2/metabolism , Autophagy/drug effects , Doxorubicin/adverse effects , Doxorubicin/toxicity , Mice , Ferroptosis/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Mice, Inbred C57BL , Cell Line , Rats
4.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731434

ABSTRACT

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Subject(s)
Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
5.
FASEB J ; 38(10): e23651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752537

ABSTRACT

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Subject(s)
Autophagy , Interferon-beta , Intraocular Pressure , Trabecular Meshwork , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Humans , Animals , Mice , Intraocular Pressure/physiology , Interferon-beta/metabolism , Male , Female , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Mice, Inbred C57BL , Mutation , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Pedigree , Odontodysplasia , Vascular Calcification , Dental Enamel Hypoplasia , Metacarpus/abnormalities , Osteoporosis , Muscular Diseases , Aortic Diseases , Receptors, Immunologic
6.
FASEB J ; 38(10): e23671, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752538

ABSTRACT

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Subject(s)
Apoptosis , Autophagy , Ependymoglial Cells , Furans , Indenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Animals , Autophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Apoptosis/drug effects , Sulfonamides/pharmacology , Inflammasomes/metabolism , Furans/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Indenes/pharmacology , Mice, Inbred C57BL , Hypoxia/metabolism , Cyclic S-Oxides/pharmacology , Sulfones/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Signal Transduction/drug effects
7.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708789

ABSTRACT

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Subject(s)
Anxiety , Autophagy , Behavior, Animal , Depression , Mice, Inbred ICR , Oxidative Stress , Pesticides , Animals , Female , Male , Mice , Autophagy/drug effects , Anxiety/chemically induced , Anxiety/physiopathology , Anxiety/metabolism , Depression/metabolism , Depression/genetics , Depression/chemically induced , Depression/physiopathology , Oxidative Stress/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Behavior, Animal/drug effects , Locomotion/drug effects , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chlorpyrifos/toxicity , Chlorpyrifos/adverse effects
8.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735936

ABSTRACT

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Subject(s)
Autophagy , Granulosa Cells , Nanostructures , Ovary , Titanium , Animals , Female , Autophagy/drug effects , Titanium/toxicity , Titanium/chemistry , Titanium/pharmacology , Mice , Ovary/drug effects , Ovary/metabolism , Nanostructures/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism
9.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Article in English | MEDLINE | ID: mdl-38741891

ABSTRACT

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Subject(s)
Apoptosis , Gastrointestinal Microbiome , Hesperidin , Kidney , Zinc , Animals , Hesperidin/pharmacology , Swine , Zinc/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects , Gastrointestinal Microbiome/drug effects , Autophagy/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control
10.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Article in English | MEDLINE | ID: mdl-38712979

ABSTRACT

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Apoptosis , Autophagy , Flavonoids , Myocytes, Cardiac , Signal Transduction , TOR Serine-Threonine Kinases , Flavonoids/pharmacology , Animals , Autophagy/drug effects , Apoptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , Male , Mice, Inbred C57BL , Cell Line , Rats
11.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
12.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734811

ABSTRACT

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Subject(s)
Apoptosis , Capsaicin , Cell Proliferation , HSP70 Heat-Shock Proteins , Melanocytes , Mitochondria , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Vitiligo , Toll-Like Receptor 4/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Vitiligo/metabolism , Vitiligo/drug therapy , Capsaicin/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Cell Line , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Membrane Potential, Mitochondrial/drug effects , Autophagy/drug effects
13.
J Cancer Res Clin Oncol ; 150(5): 242, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717639

ABSTRACT

BACKGROUND: Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment. METHODS: In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot. RESULTS: We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo. CONCLUSION: In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.


Subject(s)
Autophagy , Cisplatin , Colorectal Neoplasms , Drug Resistance, Neoplasm , Lysosomal-Associated Membrane Protein 2 , Humans , Cisplatin/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Autophagy/drug effects , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Animals , Mice , Cell Proliferation , Antineoplastic Agents/pharmacology , Mice, Nude , Cell Movement , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Male , Mice, Inbred BALB C , Prognosis
14.
Int J Oral Sci ; 16(1): 35, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719825

ABSTRACT

The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.


Subject(s)
Autophagy , Carcinoma, Squamous Cell , Cell Proliferation , Endoplasmic Reticulum Stress , Mouth Neoplasms , Phenformin , Transcription Factors , Phenformin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Humans , Mouth Neoplasms/drug therapy , Autophagy/drug effects , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation/drug effects , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/drug effects , Mice , Apoptosis Regulatory Proteins/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Blotting, Western
15.
Nat Commun ; 15(1): 3805, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714664

ABSTRACT

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Glucose , Glycolysis , NF-kappa B , Receptor, Fibroblast Growth Factor, Type 2 , Signal Transduction , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Humans , NF-kappa B/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Glycolysis/drug effects , Glucose/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Pyrimidines/pharmacology , Autophagy/drug effects , Gene Expression Regulation, Neoplastic/drug effects
16.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782909

ABSTRACT

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Subject(s)
Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cisplatin/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Exosomes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Trehalose/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Humans , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
17.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786033

ABSTRACT

Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Palmitic Acid , Pyroptosis , Tretinoin , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Diterpenes/pharmacology , Palmitic Acid/pharmacology , Pyroptosis/drug effects , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Tretinoin/pharmacology , Animals , Autophagy/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects
18.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786030

ABSTRACT

Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.


Subject(s)
Carboplatin , Triple Negative Breast Neoplasms , Carboplatin/pharmacology , Carboplatin/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Female , Cell Line, Tumor , Mice , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Autophagy/drug effects , Lysosomes/metabolism , Lysosomes/drug effects
19.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786060

ABSTRACT

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Subject(s)
Antioxidants , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Animals , Cisplatin/pharmacology , Female , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins , Mice , Pyruvate Kinase/metabolism , Glycolysis/drug effects , Autophagy/drug effects , Carrier Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology
20.
Cells ; 13(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786097

ABSTRACT

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Subject(s)
Amyloid beta-Peptides , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Proteomics , Receptor, Cannabinoid, CB2 , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Proteomics/methods , Receptor, Cannabinoid, CB2/metabolism , Ligands , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Autophagy/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...