Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.103
Filter
1.
Cell Commun Signal ; 22(1): 305, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831299

ABSTRACT

As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS­CoV­2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.


Subject(s)
Autophagy , COVID-19 , Membrane Proteins , SARS-CoV-2 , Autophagy/immunology , Autophagy/drug effects , Humans , Membrane Proteins/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Animals , COVID-19 Vaccines/immunology , Immunity, Innate/drug effects , Adjuvants, Vaccine/therapeutic use , Adjuvants, Vaccine/pharmacology , Adjuvants, Immunologic/pharmacology
2.
J Immunol ; 212(12): 1932-1944, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38709167

ABSTRACT

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.


Subject(s)
Autophagy , Candida albicans , Candidiasis , Interferon Regulatory Factor-7 , Lectins, C-Type , Macrophages , Mice, Knockout , Phagocytosis , Receptors, Cell Surface , TOR Serine-Threonine Kinases , Animals , Mice , Phagocytosis/immunology , Autophagy/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Candidiasis/immunology , Candida albicans/immunology , Candida albicans/physiology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Macrophages/immunology , Humans , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred C57BL , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Signal Transduction/immunology
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710519

ABSTRACT

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Subject(s)
Ferroptosis , Neoplasms , Tumor Microenvironment , Animals , Humans , Autophagy/immunology , B-Lymphocytes/immunology , Ferroptosis/immunology , Immunity, Innate , Macrophages/immunology , Neoplasms/immunology , Neoplasms/metabolism , Neutrophils/immunology , T-Lymphocytes/immunology
4.
Front Immunol ; 15: 1343987, 2024.
Article in English | MEDLINE | ID: mdl-38690268

ABSTRACT

Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.


Subject(s)
Autoimmune Diseases , Autophagy , Skin Diseases , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Skin Diseases/immunology , Animals , Skin/immunology , Skin/pathology , Skin/metabolism , Homeostasis/immunology
5.
Autoimmunity ; 57(1): 2351872, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38739691

ABSTRACT

Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.


Subject(s)
Autoimmune Diseases , Autophagy , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Animals , Signal Transduction/immunology , Molecular Targeted Therapy
6.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article in English | MEDLINE | ID: mdl-38817444

ABSTRACT

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Subject(s)
Autophagy , Dendritic Cells , Echinococcosis , Echinococcus granulosus , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Echinococcus granulosus/immunology , Autophagy/immunology , Echinococcosis/immunology , Echinococcosis/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Lectins, C-Type/metabolism , Cytokines/metabolism , Female , Autophagosomes/immunology , Autophagosomes/metabolism
7.
PLoS Pathog ; 20(5): e1012227, 2024 May.
Article in English | MEDLINE | ID: mdl-38739631

ABSTRACT

IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , Zebrafish Proteins , Zebrafish , Animals , Interferon Regulatory Factor-3/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Rhabdoviridae Infections/immunology , Phosphorylation , Ubiquitination , Humans , Autophagy/immunology
8.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675873

ABSTRACT

Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.


Subject(s)
Plant Diseases , Plant Immunity , Tobamovirus , Plant Diseases/virology , Plant Diseases/immunology , Tobamovirus/immunology , Tobamovirus/genetics , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/immunology , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Autophagy/immunology , Plant Growth Regulators , Crops, Agricultural/immunology , Crops, Agricultural/virology
9.
Cancer Lett ; 590: 216856, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583651

ABSTRACT

Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.


Subject(s)
Autophagy , Immunotherapy , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Autophagy/immunology , Autophagy/drug effects , Immunotherapy/methods , Tumor Escape , Animals , Adaptive Immunity , Cell Death/immunology , Immunity, Innate
10.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636698

ABSTRACT

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Subject(s)
Autophagy , Interferon Regulatory Factor-7 , Interferon Regulatory Factors , Lysosomes , Rhabdoviridae , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Autophagy/immunology , Lysosomes/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Rhabdoviridae/physiology , Rhabdoviridae/immunology , Interferons/metabolism , Poly I-C/immunology , Rhabdoviridae Infections/immunology , Proteolysis , Fish Diseases/immunology , Fish Diseases/virology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , Immunity, Innate
11.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573502

ABSTRACT

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Subject(s)
Biological Evolution , Immunity, Innate , Insecta , Mammals , Animals , Insecta/immunology , Mammals/immunology , Autophagy/immunology
12.
Front Immunol ; 15: 1356369, 2024.
Article in English | MEDLINE | ID: mdl-38660307

ABSTRACT

Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.


Subject(s)
Autophagy , Membrane Proteins , Neoplasms , Nucleotidyltransferases , Signal Transduction , Humans , Autophagy/immunology , Nucleotidyltransferases/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Membrane Proteins/metabolism , Animals , Immunity, Innate
13.
Int Immunopharmacol ; 132: 111929, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38555817

ABSTRACT

Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.


Subject(s)
Acetamides , Autophagy , Chemokine CXCL10 , Inflammation , Macrophages , Mice, Inbred C57BL , Pyrimidinones , Receptors, CXCR3 , Animals , Receptors, CXCR3/metabolism , Receptors, CXCR3/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Autophagy/immunology , Inflammation/immunology , Inflammation/metabolism , Poly I-C/pharmacology , Lysosomal Membrane Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Male , Signal Transduction , Humans , Macrophage Activation
14.
Transpl Immunol ; 84: 102021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452984

ABSTRACT

BACKGROUND: Antibody-mediated rejection (ABMR) emerged as a major cause of graft loss in renal transplantation. Needle biopsy is the gold standard for diagnosis of ABMR in renal allografts. Thus, noninvasive diagnosis methods of ABMR with high accuracy are urgently needed to prevent unnecessary biopsies. METHODS: We collected peripheral blood transcriptome data from two independent renal transplantation cohorts with patients with ABMR, stable well-functioning transplants (STA), and T-cell mediated rejection (TCMR). Differentially expressed genes (DEGs) were identified by comparing the ABMR group with the STA group. In addition, functional enrichment analysis and gene set enrichment analysis were performed to seek new key underlying mechanisms in ABMR. Subsequently, we utilized a Boruta algorithm and least absolute shrinkage and selection operator logistic algorithm to establish a diagnostic model which was then evaluated and validated in an independent cohort. RESULTS: According to functional enrichment analysis, autophagy was found to be the primary upregulated biological process in ABMR. Based on algorithms, three autophagy-associated genes, ubiquitin specific peptidase 33 (USP33), Ras homolog mTORC1 binding (RHEB), and ABL proto-oncogene 2 (ABL2), were selected to establish the diagnostic model in the training cohort. This autophagy-related gene model possessed good diagnostic value in distinguishing ABMR from STA blood samples in the training cohort (AUC = 0.907) and in the validation cohort (AUC = 0.972). In addition, this model also showed good discernibility in distinguishing ABMR from TCMR in the training and validation cohorts (AUCs = 0.908 and 0.833). CONCLUSION: We identified and validated an autophagy-associated diagnostic model with high accuracy for renal transplant patients with ABMR. Our study provided a new potential test for the non-invasive diagnosis of ABMR in clinical practice and highlighted the importance of autophagy in ABMR.


Subject(s)
Autophagy , Graft Rejection , Kidney Transplantation , Humans , Graft Rejection/diagnosis , Graft Rejection/immunology , Autophagy/immunology , Female , Male , Middle Aged , Adult , Proto-Oncogene Mas , Transcriptome , Isoantibodies/immunology , Isoantibodies/blood
15.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Article in English | MEDLINE | ID: mdl-38447147

ABSTRACT

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Subject(s)
Autophagy-Related Protein-1 Homolog , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Mice , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , MAP Kinase Signaling System/immunology , Coumarins/pharmacology , Coumarins/metabolism , Disease Models, Animal , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Mice, Inbred C57BL , Autophagy/immunology
16.
J Reprod Immunol ; 163: 104223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489930

ABSTRACT

Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.


Subject(s)
Autophagy , Decidua , Endometrium , Pregnancy Complications , Signal Transduction , Humans , Female , Pregnancy , Autophagy/immunology , Signal Transduction/immunology , Pregnancy Complications/immunology , Decidua/immunology , Decidua/metabolism , Endometrium/immunology , Endometrium/metabolism , Animals , Embryonic Development/immunology , Embryonic Development/genetics , Embryo Implantation/immunology
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1394-1402, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846690

ABSTRACT

OBJECTIVE: To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma. METHODS: Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR). RESULTS: Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05). CONCLUSION: Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Subject(s)
Antineoplastic Agents , Bortezomib , Burkitt Lymphoma , Receptors, CXCR , Xanthones , Humans , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/immunology , Autophagy/drug effects , Autophagy/immunology , bcl-2-Associated X Protein/biosynthesis , bcl-2-Associated X Protein/immunology , Bortezomib/immunology , Bortezomib/pharmacology , Bortezomib/therapeutic use , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Therapy, Combination , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2 , Receptors, CXCR/biosynthesis , Receptors, CXCR/immunology , RNA, Messenger , TOR Serine-Threonine Kinases , Xanthones/immunology , Xanthones/pharmacology , Xanthones/therapeutic use
18.
J Virol ; 97(4): e0181422, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36939341

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Subject(s)
Autophagy , Immunity, Innate , Nucleoproteins , Rift Valley fever virus , Immunity, Innate/immunology , Rift Valley fever virus/immunology , Nucleoproteins/immunology , Nucleoproteins/metabolism , Autophagy/immunology , Virus Replication , Cell Line , Rift Valley Fever/immunology , Humans , Animals , Macrophages/virology
19.
Autophagy ; 19(10): 2811-2813, 2023 10.
Article in English | MEDLINE | ID: mdl-36779581

ABSTRACT

Previously considered as an exclusive extracellular bacterium, Staphylococcus aureus has been shown to be able to invade many cells in vitro and in humans. Once inside the host cell, both cytosolic and endosome-associated S. aureus strongly induce macroautophagy/autophagy. Whether autophagy fosters S. aureus intracellular survival or clearance remains unclear. The YAP1-TEAD axis regulates the expression of target genes controlling the cell fate (e.g., proliferation, migration, cell cycle …). Growing evidence indicates that YAP1-TEAD also regulates autophagy and lysosomal pathways. Recently we showed that the YAP1-TEAD axis promotes autophagy and lysosome biogenesis to restrict S. aureus intracellular replication. We also discovered that the C3 exoenzyme-like EDIN-B toxin produced by the pathogenic S. aureus ST80 strain inhibits YAP1 nuclear translocation resulting in a strong increase of intracellular S. aureus burden.


Subject(s)
Autophagy , Intracellular Space , Staphylococcus aureus , TEA Domain Transcription Factors , Humans , Autophagy/immunology , HEK293 Cells , Intracellular Space/microbiology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/growth & development , Staphylococcus aureus/immunology , TEA Domain Transcription Factors/metabolism , In Vitro Techniques
20.
Sci Rep ; 13(1): 1663, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717601

ABSTRACT

Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.


Subject(s)
Autophagy , Kinesins , Mycobacterium tuberculosis , Tuberculosis , Humans , Autophagy/genetics , Autophagy/immunology , Beijing , Carrier Proteins/genetics , Carrier Proteins/immunology , Kinesins/genetics , Kinesins/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Tuberculosis/genetics , Tuberculosis/immunology , Macrophages/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...