Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(4): 2457-2476, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36749313

ABSTRACT

One possible strategy for modulating autophagy is to disrupt the critical protein-protein interactions (PPIs) formed during this process. Our attention is on the autophagy-related 12 (ATG12)-autophagy-related 5 (ATG5)-autophagy-related 16-like 1 (ATG16L1) heterotrimer complex, which is responsible for ATG8 translocation from ATG3 to phosphatidylethanolamine. In this work, we discovered a compound with an (E)-3-(2-furanylmethylene)-2-pyrrolidinone core moiety (T1742) that blocked the ATG5-ATG16L1 and ATG5-TECAIR interactions in the in vitro binding assay (IC50 = 1-2 µM) and also exhibited autophagy inhibition in cellular assays. The possible binding mode of T1742 to ATG5 was predicted through molecular modeling, and a batch of derivatives sharing essentially the same core moiety were synthesized and tested. The outcomes of the in vitro binding assay and the flow cytometry assay of those newly synthesized compounds were generally consistent. This work has validated our central hypothesis that small-molecule inhibitors of the PPIs involving ATG5 can tune down autophagy effectively, and their pharmaceutical potential may be further explored.


Subject(s)
Antineoplastic Agents , Autophagy-Related Protein 12 , Autophagy-Related Protein 5 , Autophagy-Related Proteins , Autophagy , Multiprotein Complexes , Autophagy/drug effects , Autophagy-Related Protein 12/antagonists & inhibitors , Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/chemistry , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Models, Molecular , Protein Conformation , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Animals
2.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33484718

ABSTRACT

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Subject(s)
Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Proteins/chemistry , Cell Membrane/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Autophagy/genetics , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , Binding Sites , Cell Membrane/metabolism , Gene Expression Regulation, Fungal , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Liposomes/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship
3.
Science ; 369(6508)2020 09 04.
Article in English | MEDLINE | ID: mdl-32883836

ABSTRACT

Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagosomes/chemistry , Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 12/metabolism , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/chemistry , Lipid Metabolism , Membrane Proteins/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proteolipids/chemistry , Proteolipids/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Unilamellar Liposomes/metabolism
4.
Fish Shellfish Immunol ; 93: 702-710, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31421242

ABSTRACT

Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process used to maintain cell survival and homeostasis. A series of autophagy-related genes (Atgs) are involved in the autophagic pathway. In mammals, a growing number of studies have attributed functions to some Atgs that are distinct from their classical role in autophagosome biogenesis, such as resistance to pathogens. However, little is known about the functions of fish Atgs. In this study, we cloned and characterized an atg12 homolog from orange spotted grouper (Epinephelus coioides) (Ecatg12). Ecatg12 encodes a 117 amino acid protein that shares 94.0% and 76.8% identity with gourami (Anabas_testudineus) and humans (Homo sapiens), respectively. The transcription level of Ecatg12 was lower in cells infected with Singapore grouper iridovirus (SGIV) than in non-infected cells. Fluorescence microscopy revealed that EcAtg12 localized in the cytoplasm and nucleus in grouper spleen cells. Overexpression of EcAtg12 significantly increased the replication of SGIV, as evidenced by increased severity of the cytopathic effect, transcription levels of viral genes, levels of viral proteins, and progeny virus yield. Further studies showed that EcAtg12 overexpression decreased the expression levels of interferon (IFN) related molecules and pro-inflammatory factors and inhibited the promoter activity of IFN-3, interferon-stimulated response element, and nuclear factor-κB. Together, these results demonstrate that EcAtg12 plays crucial roles in SGIV replication by downregulating antiviral immune responses.


Subject(s)
Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/immunology , Bass/genetics , Bass/immunology , Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Animals , Autophagy-Related Protein 12/chemistry , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Phylogeny , Ranavirus/physiology , Sequence Alignment/veterinary
5.
Cells ; 8(1)2019 01 19.
Article in English | MEDLINE | ID: mdl-30669443

ABSTRACT

Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.


Subject(s)
Autophagy-Related Protein 12/metabolism , Autophagy , Dictyostelium/metabolism , Amino Acid Sequence , Autophagy/genetics , Autophagy-Related Protein 12/chemistry , Cell Survival , Conserved Sequence , Endocytosis , Evolution, Molecular , Gene Expression Regulation , Gene Ontology , Lysosomes/metabolism , Mutation/genetics , Nitrogen/deficiency , Proteostasis
6.
Methods Mol Biol ; 1880: 57-75, 2019.
Article in English | MEDLINE | ID: mdl-30610689

ABSTRACT

Members of the autophagy-related protein 8 (Atg8) family of ubiquitin-like proteins (ublps), including mammalian LC3 and GABARAP proteins, play crucial roles in autophagosome biogenesis, as well as selective autophagy. Upon induction of autophagy, the autophagic ublps are covalently attached to a phosphatidylethanolamine (PE) molecule of the autophagosomal membrane. This unique lipid conjugation of the autophagic ublps, which is essential for their functions, occurs in a ubiquitination-like reaction cascade consisting of the E1 enzyme ATG7, the E2 ATG3, and the E3 ATG12~ATG5-ATG16L1 complex (~denotes a covalent linkage). These enzymes are structurally unique among those of the canonical ubiquitination cascades, necessitating structural and biochemical studies of these molecules for understanding the molecular mechanisms underlying the lipidation cascade. Here, we will describe methods that were employed in our previous studies (Otomo et al., Nat Struct Mol Biol 20:59-66, 2013; Metlagel et al., Proc Natl Acad Sci U S A 110:18844-18849, 2013; Ohashi and Otomo, Biochem Biophys Res Commun 463:447-452, 2015), including the production of recombinant enzymes, in vitro enzymatic reactions, the crystallization of the E3 complexes, and the NMR-based investigations of E1-E2 and E2-E3 interactions.


Subject(s)
Autophagy-Related Proteins/chemistry , Cloning, Molecular/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphatidylethanolamines/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins , Autophagy , Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Proteins/genetics , Baculoviridae/genetics , Cell Line , Crystallization/methods , Escherichia coli/genetics , Humans , Insecta , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Protein Conformation , Transfection/methods , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
7.
Biochem Biophys Res Commun ; 508(2): 521-526, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30503495

ABSTRACT

Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.


Subject(s)
Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 7/chemistry , Autophagy-Related Protein 8 Family/chemistry , Autophagy/drug effects , Autophagosomes/drug effects , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/pharmacology , Cells, Cultured , Humans , Mutant Proteins/chemistry , Mutant Proteins/pharmacology , Phosphatidylethanolamines/chemistry
8.
Int J Dev Biol ; 61(6-7): 389-395, 2017.
Article in English | MEDLINE | ID: mdl-28695958

ABSTRACT

Autophagy is an evolutionarily conserved process in eukaryotic cells that is involved in the degradation of cytoplasmic contents including organelles via the lysosome. Hydra is an early metazoan which exhibits simple tissue grade organization, a primitive nervous system, and is one of the classical non-bilaterian models extensively used in evo-devo research. Here, we describe the characterization of two core autophagy genes, Atg12 and Atg5, from hydra. In silico analyses including sequence similarity, domain analysis, and phylogenetic analysis demonstrate the conservation of these genes across eukaryotes. The predicted 3D structure of hydra Atg12 showed very little variance when compared to human Atg12 and yeast Atg12, whereas the hydra Atg5 predicted 3D structure was found to be variable, when compared with its human and yeast homologs. Strikingly, whole mount in situ hybridization showed high expression of Atg12 transcripts specifically in nematoblasts, whereas Atg5 transcripts were found to be expressed strongly in budding region and growing buds. This study may provide a framework to understand the evolution of autophagy networks in higher eukaryotes.


Subject(s)
Autophagy-Related Protein 12/metabolism , Autophagy-Related Protein 5/metabolism , Hydra/metabolism , Amino Acid Sequence , Animals , Autophagy , Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 5/genetics , Hydra/genetics , Hydra/growth & development , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...