Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Exp Dermatol ; 33(5): e15094, 2024 May.
Article in English | MEDLINE | ID: mdl-38742793

ABSTRACT

Melasma is a common condition of hyperpigmented facial skin. Picosecond lasers are reported to be effective for the treatment of melasma. We aimed to identify the most effective therapeutic mode and elucidate the potential molecular mechanisms of picosecond lasers for the treatment of melasma. Female Kunming mice with melasma-like conditions were treated using four different picosecond laser modes. Concurrently, in vitro experiments were conducted to assess changes in melanin and autophagy in mouse melanoma B16-F10 cells treated with these laser modes. Changes in melanin in mouse skin were detected via Fontana-Masson staining, and melanin particles were evaluated in B16-F10 cells. Real-time polymerase chain reaction and western blotting were used to analyse the expression levels of melanosome and autophagy-related messenger ribonucleic acid (mRNA) and proteins. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers resulted insignificant decreases in melanin as well as in mRNA and protein expression of melanin-synthesizing enzymes (TYR, TRP-1 and MITF). This combination also led to increased expression of the autophagy-related proteins, Beclin1 and ATG5, with a marked decrease in p62 expression. Intervention with the PI3K activator, 740 Y-P, increased TYR, TRP-1, MITF, p-PI3K, p-AKT, p-mTOR and p62 expression but decreased the expression of LC3, ATG5 and Beclin1. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers proved more effective and safer. It inhibits melanin production, downregulates the PI3K/AKT/mTOR pathway, enhances melanocyte autophagy and accelerates melanin metabolism, thereby reducing melanin content.


Subject(s)
Autophagy , Melanins , Melanosis , Melanosomes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Melanosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Female , Mice , Proto-Oncogene Proteins c-akt/metabolism , Melanins/metabolism , Melanosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Low-Level Light Therapy , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/radiotherapy
2.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38796213

ABSTRACT

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Subject(s)
Apoptosis , Autophagy , Cathepsin D , Lysosomes , Cathepsin D/metabolism , Cathepsin D/genetics , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Benzylisoquinolines/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Hydrogen-Ion Concentration , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
3.
J Med Virol ; 96(5): e29659, 2024 May.
Article in English | MEDLINE | ID: mdl-38747016

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Subject(s)
Antigens, CD , Autophagy-Related Protein 5 , Bone Marrow Stromal Antigen 2 , GPI-Linked Proteins , Hepatitis B virus , Virus Replication , Humans , Antigens, CD/genetics , Antigens, CD/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Gene Knockdown Techniques , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Hep G2 Cells , Hepatitis B/virology , Hepatitis B/genetics , Hepatitis B virus/physiology , Hepatitis B virus/genetics , Host-Pathogen Interactions , Signal Transduction , Bone Marrow Stromal Antigen 2/metabolism
4.
Biochem Biophys Res Commun ; 710: 149887, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581954

ABSTRACT

SS-31 is a mitochondria-targeting short peptide. Recent studies have indicated its hepatoprotective effects. In our study, we investigated the impact of SS-31 on LPS-induced autophagy in HepG2 cells. The results obtained from a dual-fluorescence autophagy detection system revealed that SS-31 promotes the formation of autolysosomes and autophagosomes, thereby facilitating autophagic flux to a certain degree. Additionally, both ELISA and qPCR analyses provided further evidence that SS-31 safeguards HepG2 cells against inflammatory responses triggered by LPS through ATG5-dependent autophagy. In summary, our study demonstrates that SS-31 inhibits LPS-stimulated inflammation in HepG2 cells by upregulating ATG5-dependent autophagy.


Subject(s)
Autophagy , Lipopolysaccharides , Humans , Hep G2 Cells , Lipopolysaccharides/pharmacology , Autophagosomes , Inflammation , Autophagy-Related Protein 5/genetics
5.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Article in English | MEDLINE | ID: mdl-38683127

ABSTRACT

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Subject(s)
Aging , Autophagy-Related Protein 5 , Autophagy , Cell Nucleus , Myocardium , Troponin I , Troponin I/metabolism , Troponin I/genetics , Autophagy/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Aging/metabolism , Aging/genetics , Animals , Myocardium/metabolism , Humans , Cell Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice , HEK293 Cells , Male , Promoter Regions, Genetic , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Mice, Knockout
6.
Obesity (Silver Spring) ; 32(6): 1136-1143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644654

ABSTRACT

OBJECTIVE: Maternal obesity affects 39.7% of reproductive-age women in the United States. Emerging research has suggested that in utero exposure to maternal obesity is associated with adverse neurodevelopmental outcomes, but knowledge of underlying mechanisms in human samples is lacking. METHODS: A matched case-control study was performed in women with singleton fetuses who were undergoing elective pregnancy termination at gestational ages 15 to 21 weeks. Maternal adiponectin levels from plasma were measured using ELISA kits. RNA was extracted from fetal brain tissue using RNeasy Mini Kit (QIAGEN). mRNA expression from ADIPOR1, ADIPOR2, MTOR, ATG5, ATG7, BECN1, and MAP1LC3B was quantified through the ΔΔCt method and using GAPDH as a housekeeping gene. RESULTS: We have identified transcription patterns associated with inhibition of autophagy in male fetal brain tissue exposed to maternal obesity (↑MTOR, ↓ATG5, ↓ATG7, and ↓MAP1LC3B), with female fetuses demonstrating either no change in transcription or nonsignificant changes associated with increased autophagy. There was significant downregulation of the autophagy-associated gene BECN1 in both male and female individuals who were exposed to obesity in utero. CONCLUSIONS: We present novel evidence suggesting that in utero exposure to maternal obesity in humans may significantly affect neurodevelopment, especially in male fetuses, through alterations in normal autophagy molecular mechanisms and with adiponectin as a potential mediator.


Subject(s)
Adiponectin , Autophagy , Beclin-1 , Brain , Microtubule-Associated Proteins , Obesity, Maternal , TOR Serine-Threonine Kinases , Humans , Female , Pregnancy , Male , Case-Control Studies , Obesity, Maternal/metabolism , Brain/metabolism , TOR Serine-Threonine Kinases/metabolism , Adiponectin/metabolism , Adiponectin/blood , Beclin-1/metabolism , Adult , Microtubule-Associated Proteins/metabolism , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Fetus/metabolism , RNA, Messenger/metabolism , Sex Factors , Gestational Age , Down-Regulation , Obesity/metabolism
7.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658149

ABSTRACT

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Subject(s)
Autophagy , Comovirus , Disease Resistance , Gene Silencing , Glycine max , Plant Diseases , Glycine max/genetics , Glycine max/microbiology , Glycine max/immunology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/virology , Autophagy/genetics , Comovirus/genetics , Plant Senescence/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Salicylic Acid/metabolism , Autophagy-Related Protein 5/genetics , Plants, Genetically Modified/genetics
8.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554280

ABSTRACT

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Subject(s)
Autophagy , Immune Checkpoint Inhibitors , Lymph Nodes , Sphingosine/analogs & derivatives , T-Lymphocytes , Autophagy/drug effects , Animals , Lymph Nodes/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Endothelial Cells/metabolism , Sphingosine/pharmacology , Sphingosine/metabolism , Humans , Lysophospholipids/metabolism , Immunotherapy/methods , Cell Movement
9.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499149

ABSTRACT

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Subject(s)
Autophagy , Inflammasomes , Keratinocytes , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Ultraviolet Rays , Humans , Autophagy/radiation effects , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Beclin-1/metabolism , Beclin-1/genetics , Inflammasomes/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Mitochondria/metabolism , Mitochondria/radiation effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Ultraviolet Rays/adverse effects , Cells, Cultured
10.
Crit Rev Eukaryot Gene Expr ; 34(3): 17-26, 2024.
Article in English | MEDLINE | ID: mdl-38305285

ABSTRACT

Long non-coding RNAs (lncRNAs) are involved in the pathogenesis of hepatocellular carcinoma (HCC). This study aimed to investigate the potential of MIR222HG in HCC. HCC cells were co-cultured with U937 cells. Gene expression was determined using reverse transcription-quantitative (RT-q) PCR and western blot. Functional analysis was performed using Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays. We found that MIR222HG was overexpressed in HCC patients as well as HepG2 and Huh7 cells. MIR222HG-mediated upregulation of autophagy related 5 (ATG5) promoted tumor cell autophagy and the activation of M2-like tumor-associated macrophages (TAM2). Moreover, MIR222HG-mediated the activation of TAM2 drove the proliferation of HCC cells. Additionally, MIR222HG increased the mRNA expression as well as promoted the mRNA stability of ATG5 via binding to lin-28 homolog B (LIN28B). In conclusion, MIR222HG-mediated autophagy and the activation of TAM2 promote the aggressiveness of HCC cells via regulating LIN28B/ATG5 signaling.


Subject(s)
Autophagy-Related Protein 5 , Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , RNA-Binding Proteins , Humans , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Macrophages/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Microbiol Immunol ; 68(2): 47-55, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991129

ABSTRACT

Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/complications , Hepatitis B virus , Liver Neoplasms/genetics , Genotype , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Hepatitis B/complications , Hepatitis B/genetics , China , Case-Control Studies , Autophagy-Related Protein 5/genetics , Autophagy-Related Proteins/genetics
12.
Genes (Basel) ; 14(12)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38136993

ABSTRACT

Sporadic Parkinson's disease, characterised by a decline in dopamine, usually manifests in people over 65 years of age. Although 10% of cases have a genetic (familial) basis, most PD is sporadic. Genome sequencing studies have associated several genetic variants with sporadic PD. Our aim was to analyse the promoter region of the ATG16L1 and ATG5 genes in sporadic PD patients and ethnically matched controls. Genotypes were obtained by using the Sanger method with primers designed by us. The number of haplotypes was estimated with DnaSP software, phylogeny was reconstructed in Network, and genetic divergence was explored with Fst. Seven and two haplotypes were obtained for ATG16L1 and ATG5, respectively. However, only ATG16L1 showed a significant contribution to PD and a significant excess of accumulated mutations that could influence sporadic PD disease. Of a total of seven haplotypes found, only four were unique to patients sharing the T allele (rs77820970). Recent studies using MAPT genes support the notion that the architecture of haplotypes is worthy of being considered genetically risky, as shown in our study, confirming that large-scale assessment in different populations could be relevant to understanding the role of population-specific heterogeneity. Finally, our data suggest that the architecture of certain haplotypes and ethnicity determine the risk of PD, linking haplotype variation and neurodegenerative processes.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease , Promoter Regions, Genetic , Humans , Autophagy-Related Protein 5/genetics , Autophagy-Related Proteins/genetics , Genotype , Haplotypes , Parkinson Disease/genetics
13.
BMC Pulm Med ; 23(1): 422, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919667

ABSTRACT

BACKGROUND: Angiotensin (Ang)-(1-7) can reduce airway inflammation and airway remodeling in allergic asthma. Autophagy-related 5 (ATG5) has attracted wide attentions in asthma. However, the effects of Ang-(1-7) on ATG5-mediated autophagy in allergic asthma are unclear. METHODS: In this study, human bronchial epithelial cell (BEAS-2B) and human bronchial smooth muscle cell (HBSMC) were treated with different dose of Ang-(1-7) to observe changes of cell viability. Changes of ATG5 protein expression were measured in 10 ng/mL of interleukin (IL)-13-treated cells. Transfection of ATG5 small interference RNA (siRNA) or ATG5 cDNA in cells was used to analyze the effects of ATG5 on secretion of cytokines in the IL-13-treated cells. The effects of Ang-(1-7) were compared to the effects of ATG5 siRNA transfection or ATG5 cDNA transfection in the IL-13-treated cells. In wild-type (WT) mice and ATG5 knockout (ATG5-/-) mice, ovalbumin (OVA)-induced airway inflammation, fibrosis and autophagy were observed. In the OVA-induced WT mice, Ang-(1-7) treatment was performed to observe its effects on airway inflammation, fibrosis and autophagy. RESULTS: The results showed that ATG5 protein level was decreased with Ang-(1-7) dose administration in the IL-13-treated BEAS-2B and IL13-treated HBSMC. Ang-(1-7) played similar results to ATG5 siRNA that it suppressed the secretion of IL-25 and IL-13 in the IL-13-treated BEAS-2B cells, and inhibited the expression of transforming growth factor (TGF)-ß1 and α-smooth muscle actin (α-SMA) protein in the IL-13-treated HBSMC cells. ATG5 cDNA treatment significantly increased the secretion of IL-25 and IL-13 and expression of TGF-ß1 and α-SMA protein in IL-13-treated cells. Ang-(1-7) treatment suppressed the effects of ATG5 cDNA in the IL-13-treated cells. In OVA-induced WT mice, Ang-(1-7) treatment suppressed airway inflammation, remodeling and autophagy. ATG5 knockout also suppressed the airway inflammation, remodeling and autophagy. CONCLUSIONS: Ang-(1-7) treatment suppressed airway inflammation and remodeling in allergic asthma through inhibiting ATG5, providing an underlying mechanism of Ang-(1-7) for allergic asthma treatment.


Subject(s)
Asthma , Lung , Humans , Animals , Mice , Lung/pathology , Ovalbumin/adverse effects , Interleukin-13 , Airway Remodeling , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/pharmacology , Autophagy-Related Protein 5/therapeutic use , DNA, Complementary/adverse effects , Asthma/genetics , Transforming Growth Factor beta1/metabolism , Inflammation/drug therapy , RNA, Small Interfering/adverse effects , Fibrosis , Disease Models, Animal , Mice, Inbred BALB C
14.
J Transl Med ; 21(1): 738, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858134

ABSTRACT

BACKGROUND: Autophagy is involved in nasopharyngeal carcinoma (NPC) radioresistance. Replication protein A 1 (RPA1) and RPA3, substrates of the RPA complex, are potential therapeutic targets for reversing NPC radioresistance. Nevertheless, the role of RPA in autophagy is not adequately understood. This investigation was performed to reveal the cytotoxic mechanism of a pharmacologic RPA inhibitor (RPAi) in NPC cells and the underlying mechanism by which RPAi-mediated autophagy regulates NPC radiosensitivity. METHODS AND RESULTS: We characterized a potent RPAi (HAMNO) that was substantially correlated with radiosensitivity enhancement and proliferative inhibition of in vivo and in NPC cell lines in vitro. We show that the RPAi induced autophagy at multiple levels by inducing autophagic flux, AMPK/mTOR pathway activation, and autophagy-related gene transcription by decreasing glycolytic function. We hypothesized that RPA inhibition impaired glycolysis and increased NPC dependence on autophagy. We further demonstrated that combining autophagy inhibition with chloroquine (CQ) treatment or genetic inhibition of the autophagy regulator ATG5 and RPAi treatment was more effective than either approach alone in enhancing the antitumor response of NPC to radiation. CONCLUSIONS: Our study suggests that HAMNO is a potent RPAi that enhances radiosensitivity and induces autophagy in NPC cell lines by decreasing glycolytic function and activating autophagy-related genes. We suggest a novel treatment strategy in which pharmacological inhibitors that simultaneously disrupt RPA and autophagic processes improve NPC responsiveness to radiation.


Subject(s)
Antineoplastic Agents , Autophagy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Radiation Tolerance , Replication Protein A , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/radiotherapy , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Replication Protein A/antagonists & inhibitors , Replication Protein A/genetics , Autophagy-Related Protein 5/genetics
15.
Cell Signal ; 112: 110927, 2023 12.
Article in English | MEDLINE | ID: mdl-37844713

ABSTRACT

During the process of atherosclerosis (AS), hypoxia induces plaque macrophage inflammation, promoting lipid accumulation. Autophagy is a cell homeostasis process that increases tolerance to stressors like oxidative stress and hypoxia. However, the specific mechanism by which hypoxia initiates autophagy and the inflammation of macrophages remains to be elucidated. Here, we found that hypoxia-induced macrophage inflammation was mediated by autophagy. Then, the effect of hypoxia on autophagy was investigated in terms of post-translational modifications of proteins. The results showed that desialylation of the autophagy protein ATG5 under hypoxic conditions enhanced protein stability by affecting its charge effect and promoted the formation of the ATG5-ATG12-ATG16L complex, further increasing autophagosome formation. And NEU1, a key enzyme in sialic acid metabolism, was significantly up-regulated under hypoxic conditions and was identified as an interacting protein of ATG5, affecting the sialylation of ATG5. In addition, the knockdown or inhibition of NEU1 reversed hypoxia-induced autophagy and inflammatory responses. In conclusion, our data reveal a key mechanism of autophagy regulation under hypoxia involving ATG5 sialylation and NEU1, suggesting that NEU1 may be a potential target for the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Neuraminidase , Humans , Neuraminidase/metabolism , Macrophages/metabolism , Inflammation , Hypoxia , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
16.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37569688

ABSTRACT

Autophagy is a catabolic pathway capable of degrading cellular components ranging from individual molecules to organelles. Autophagy helps cells cope with stress by removing superfluous or hazardous material. In a previous work, we demonstrated that transcriptional upregulation of two autophagy-related genes, ATG5 and ATG7, in Arabidopsis thaliana positively affected agronomically important traits: biomass, seed yield, tolerance to pathogens and oxidative stress. Although the occurrence of these traits correlated with enhanced autophagic activity, it is possible that autophagy-independent roles of ATG5 and ATG7 also contributed to the phenotypes. In this study, we employed affinity purification and LC-MS/MS to identify the interactome of wild-type ATG5 and its autophagy-inactive substitution mutant, ATG5K128R Here we present the first interactome of plant ATG5, encompassing not only known autophagy regulators but also stress-response factors, components of the ubiquitin-proteasome system, proteins involved in endomembrane trafficking, and potential partners of the nuclear fraction of ATG5. Furthermore, we discovered post-translational modifications, such as phosphorylation and acetylation present on ATG5 complex components that are likely to play regulatory functions. These results strongly indicate that plant ATG5 complex proteins have roles beyond autophagy itself, opening avenues for further investigations on the complex roles of autophagy in plant growth and stress responses.


Subject(s)
Arabidopsis , Autophagy-Related Protein 5 , Arabidopsis/metabolism , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry
17.
Cell Death Dis ; 14(7): 451, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474520

ABSTRACT

Exosomes contribute substantially to the communication between tumor cells and normal cells. Benefiting from the stable structure, circular RNAs (circRNAs) are believed to serve an important function in exosome-mediated intercellular communication. Here, we focused on circRNAs enriched in starvation-stressed hepatocytic exosomes and further investigated their function and mechanism in hepatocellular carcinoma (HCC) progression. Differentially expressed circRNAs in exosomes were identified by RNA sequencing, and circTGFBR2 was identified and chosen for further study. The molecular mechanism of circTGFBR2 in HCC was demonstrated by RNA pulldown, RIP, dual-luciferase reporter assays, rescue experiments and tumor xenograft assay both in vitro and vivo. We confirmed exosomes with enriched circTGFBR2 led to an upregulated resistance of HCC cells to starvation stress. Mechanistically, circTGFBR2 delivered into HCC cells via exosomes serves as a competing endogenous RNA by binding miR-205-5p to facilitate ATG5 expression and enhance autophagy in HCC cells, resulting in resistance to starvation. Thus, we revealed that circTGFBR2 is a novel tumor promoter circRNA in hepatocytic exosomes and promotes HCC progression by enhancing ATG5-mediated protective autophagy via the circTGFBR2/miR-205-5p/ATG5 axis, which may be a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
18.
Nutr Metab Cardiovasc Dis ; 33(9): 1797-1799, 2023 09.
Article in English | MEDLINE | ID: mdl-37487784

ABSTRACT

BACKGROUND AND AIMS: Type 2 diabetes (T2D) hyperglycaemia alters basal autophagy. Since autophagy is an essential cellular process, our aim was to investigate the ATG5 (autophagy-related 5) gene expression level and genetic variants in a cohort of diabetic patients, characterized for the presence of microangiopathic complications. METHODS AND RESULTS: the expression levels of ATG5 were evaluated in PBMCs from 48 T2D patients with an extensive evaluation for microangiopathic complications. Our analyses revealed a significant lower expression of ATG5 in T2D patients with retinopathy compared to those without retinopathy. We also highlighted a significant lower expression of ATG5 in T2D patients with early-cardiovascular autonomic neuropathy compared to those without it, after correction for sex, age, body mass index and levels of hemoglobin A1c. CONCLUSION: our results highlight that dysregulation in the autophagy process could be involved in the development of severe microangiopathic complications.


Subject(s)
Diabetes Mellitus, Type 2 , Retinal Diseases , Vascular Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Glycated Hemoglobin , Autophagy/genetics , Autophagy-Related Protein 5/genetics
19.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460898

ABSTRACT

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Myocardial Infarction/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Vasodilation , Animals , Mice
20.
Biomark Med ; 17(8): 437-444, 2023 04.
Article in English | MEDLINE | ID: mdl-37477539

ABSTRACT

Objective: This study aimed to explore the correlation of serum ATG5 levels with the disease risk, Th2/Th1 imbalance, symptoms and therapeutic outcomes of allergic rhinitis (AR) patients. Methods: Serum ATG5 levels in 160 AR patients, 30 disease controls and 30 healthy controls were measured by ELISA. AR patients received oral antihistamine, intranasal corticosteroid, leukotriene receptor antagonist monotherapy or their combination as needed for 4 weeks. Results: AR patients had elevated ATG5 levels compared with disease controls and healthy controls (p < 0.001). In AR patients, ATG5 levels were positively correlated with total nasal symptom scores, IL-4 levels and the IL-4/IFN-γ axis (all p < 0.05); the reduction in the ATG5 level was positively related to the total nasal symptom score decline from week 0 to week 4 (p = 0.038). Conclusion: Serum ATG5 levels have diagnostic and disease-monitoring value in AR management due to their relationship with Th2 cells and symptoms.


Subject(s)
Rhinitis, Allergic , Th2 Cells , Humans , Animals , Interleukin-4/therapeutic use , Rhinitis, Allergic/diagnosis , Rhinitis, Allergic/drug therapy , Treatment Outcome , Cytokines , Disease Models, Animal , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...