Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Sci Rep ; 14(1): 12950, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839805

ABSTRACT

Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.


Subject(s)
Avena , Bacillus , Indoleacetic Acids , Bacillus/genetics , Bacillus/metabolism , Bacillus/isolation & purification , Avena/microbiology , Avena/growth & development , Indoleacetic Acids/metabolism , Biofilms/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nitrogen Fixation , Phylogeny , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/genetics , Genome, Bacterial
2.
Planta ; 260(1): 8, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789631

ABSTRACT

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Subject(s)
Avena , Gene Expression Profiling , Metabolome , Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Avena/microbiology , Avena/genetics , Avena/metabolism , Metabolome/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Phytochemicals/metabolism , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Regulation, Plant , Disease Resistance/genetics , Host-Pathogen Interactions , Transcriptome , ortho-Aminobenzoates/metabolism
3.
Int J Food Microbiol ; 417: 110715, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38657420

ABSTRACT

Head blight (HB) of oat (Avena sativa) has caused significant production losses in oats growing areas of western China. A total of 314 isolates, associated with HB were collected from the major oat cultivating areas of Gansu, Qinghai, and Yunnan Provinces in western China. Based on morphological characters, the isolates were initially classified into three genera, as differentiation to species was a bit difficult. Taxonomic analysis of these isolates based on muti-gene phylogenetic analyses (ITS, TEF1, TUB2, and RPB2) revealed four known Fusarium species, F. proliferatum, F. avenaceum, F. poae, and F. sibiricum, and one Acremonium specie (A. sclerotigenum). In addition, a new genus Neonalanthamala gen. nov., similar to genus Nalanthamala was introduced herein with a new combination, Neonalanthamala graminearum sp. nov., to accommodate the HB fungus. The molecular clock analyses estimated the divergence time of the Neonalanthamala and Nalanthamala based on a dataset (ITS, TUB2, RPB2), and we recognized the mean stem ages of the two genera are 98.95 Mya, which showed that they evolved from the same ancestor. N. graminearum was the most prevalent throughout the surveyed provinces. Pathogenicity test was carried out by using two different methods: seed inoculation and head inoculation. Results showed that F. sibiricum isolates were the most aggressive on the seed and head. A. sclerotigenum isolates were not pathogenic to seeds, and were developed less symptoms to the head compared to other species. Data analyses showed that the correlation of the germination potential, germination index, and dry weight of seed inoculation and disease index of plant inoculation had a highly significant negative correlation (P < 0.001). These results showed that the development of HB might be predicted by seed tests for this species. A. sclerotigenum and N. graminearum causing HB are being firstly reported on oat in the world. Similarly, F. proliferatum, F. avenaceum, F. poae and F. sibiricum causing oat HB are firstly reported in China.


Subject(s)
Avena , Fusarium , Phylogeny , Plant Diseases , Avena/microbiology , Plant Diseases/microbiology , China , Fusarium/genetics , Fusarium/classification , Fusarium/isolation & purification , Fusarium/pathogenicity , DNA, Fungal/genetics , Acremonium/genetics , Acremonium/classification , Acremonium/isolation & purification
4.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668591

ABSTRACT

Trichothecenes produced by Fusarium species are commonly detected in oats. However, the ratios of the concentrations of free trichothecenes and their conjugates and how they are impacted by different interacting environmental conditions are not well documented. This study aims to examine the effect of water activity (0.95 and 0.98 aw) and temperature (20 and 25 °C) stress on the production of T-2 and HT-2 toxins, deoxynivalenol and their conjugates, as well as diacetoxyscirpenol (DAS). Multiple mycotoxins were detected using liquid chromatography-tandem mass spectrometry from 64 contaminated oat samples. The highest concentrations of HT-2-glucoside (HT-2-Glc) were observed at 0.98 aw and 20 °C, and were higher than other type A trichothecenes in the natural oats' treatments. However, no statistical differences were found between the mean concentrations of HT-2-Glc and HT-2 toxins in all storage conditions analysed. DAS concentrations were generally low and highest at 0.95 aw and 20 °C, while deoxynivalenol-3-glucoside levels were highest at 0.98 aw and 20 °C in the naturally contaminated oats. Emerging mycotoxins such as beauvericin, moniliformin, and enniatins mostly increased with a rise in water activity and temperature in the naturally contaminated oats treatment. This study reinforces the importance of storage aw and temperature conditions in the high risk of free and modified toxin contamination of small cereal grains.


Subject(s)
Avena , Food Contamination , Fusarium , Glucosides , T-2 Toxin/analogs & derivatives , Trichothecenes , Fusarium/metabolism , Avena/microbiology , Avena/chemistry , Trichothecenes/analysis , Glucosides/analysis , Food Contamination/analysis , Temperature , Mycotoxins/analysis , T-2 Toxin/analysis
5.
New Phytol ; 242(4): 1661-1675, 2024 May.
Article in English | MEDLINE | ID: mdl-38358052

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Subject(s)
Carbon , Minerals , Mycorrhizae , Mycorrhizae/physiology , Carbon/metabolism , Minerals/metabolism , Food Chain , Hyphae , Soil Microbiology , Carbon Isotopes , Avena/microbiology , Organic Chemicals/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Soil/chemistry
6.
Plant Dis ; 108(1): 175-181, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606959

ABSTRACT

The Eurasian crown rust fungus Puccinia coronata var. coronata (Pcc) was recently reported in North America and is widespread across the Midwest and Northeast United States. Pcc is a close relative of major pathogens of oats, barley, and turfgrasses. It infects two highly invasive wetland plants, glossy buckthorn (Frangula alnus) and reed canarygrass (Phalaris arundinacea), and could be useful as an augmentative biological control agent. We conducted large greenhouse trials to assess the host specificity of Pcc and determine any threat to cultivated cereals, turfgrasses, or native North American species. A total of 1,830 accessions of cereal crop species and 783 accessions of 110 other gramineous species were evaluated. Young plants were first inoculated with a composite uredinial inoculum derived from aecia. Accessions showing sporulation were further tested with pure urediniospore isolates. Sixteen potential aecial hosts in the families Rhamnaceae and Elaeagnaceae were tested for susceptibility through inoculation with germinating teliospores. Thirteen grass species within five genera in the tribe Poeae (Apera, Calamagrostis, Lamarckia, Phalaris, and Puccinellia) and four species in Rhamnaceae (Frangula alnus, F. californica, F. caroliniana, and Rhamnus lanceolata) were found to be susceptible to Pcc, with some species native to North America. All assessed crop species and turfgrasses were resistant. Limited sporulation, however, was observed on some resistant species within Poeae and four other tribes: Brachypodieae, Bromeae, Meliceae, and Triticeae. Among these species are oats, barley, and Brachypodium distachyon, suggesting the possible use of Pcc in studies of nonhost resistance.


Subject(s)
Basidiomycota , Hordeum , Puccinia , Humans , Wetlands , Plant Diseases/microbiology , Host Specificity , Avena/microbiology
7.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37955552

ABSTRACT

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Disease Resistance , Puccinia , Disease Resistance/genetics , Avena/genetics , Avena/microbiology , Virulence/genetics , Genome-Wide Association Study , Phylogeny , Plant Diseases/microbiology , Basidiomycota/genetics , Population Dynamics
8.
Toxins (Basel) ; 15(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37104186

ABSTRACT

Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies.


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin , Trichothecenes, Type B , Zearalenone , Mycotoxins/analysis , Avena/microbiology , Edible Grain/chemistry , Zearalenone/analysis , Chromatography, Liquid , Food Contamination/analysis , Tandem Mass Spectrometry , T-2 Toxin/analysis , Scotland , Glucosides
9.
Int J Food Microbiol ; 394: 110176, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36989929

ABSTRACT

Oats are highly susceptible to infection by Fusarium species, especially F. langsethiae, F. poae and F. sporotrichioides which contaminate the grain with mycotoxins. Climate change is expected to affect fungal colonisation and associated mycotoxin production. The objective of this study was to examine the effect of acclimatisation to elevated CO2 on the growth and mycotoxin production capacity of these fungal species. Strains of F. langsethiae (FL; seven strains), F. poae (FP; two strains) and F. sporotrichioides (FS; one strain) were acclimatised by sub-culturing for 10 generations at either 400 or 1000 ppm CO2 under diurnal temperature conditions. At each sub-culturing, the effect of acclimatisation to elevated CO2 on (a) lag phase prior to growth, (b) growth rate on oat-based media was assessed. Additionally, the production of type A trichothecenes and related toxic secondary metabolites of sub-cultures after 1, 7 and 10 generations were assessed using LC-MS/MS qTRAP. The results showed that Fusarium strains had an increased lag time and growth rate in response to the combined effect of sub-culturing and elevated CO2 levels. T-2 + HT-2 production was affected by elevated CO2 in strain FL4 (7.1-fold increase) and a decrease in strain FL1 (2.0-fold decrease) at the first sub-culturing and FS (1.3-fold decrease) after 7 sub-cultures compared to ambient conditions. The effect of sub-culturing on T-2 + HT-2 production varied depending on the fungal strain. For strain FL4, significantly less T-2 + HT-2 toxins were produced after 10 generations (4.4-fold decrease) as compared to that under elevated CO2 conditions after one sub-culture, and no change was observed under ambient conditions. The FS strain showed significant stimulation of T-2 + HT-2 toxin production after 10 sub-cultured generations (1.1-fold increase) compared to the initial sub-culture of this strain under elevated CO2 conditions. The production of other toxic secondary metabolites was generally not impacted by elevated CO2 conditions or by sub-culture for 10 generations, with the exceptions of FL1 and FP1. FL1 produced significantly more neosolaniol after 10 generations, when compared to those after 1 and 7, regardless of the CO2 conditions. For FP1, elevated CO2 significantly triggered beauvericin production after an initial sub-culture when compared to ambient conditions at the same sub-culture stage (29-fold). FP1 acclimatisation to elevated CO2 led to a decrease of beauvericin production after 10 generations when compared to 1 (6-fold). In contrast, sub-culturing for 10 generations compared to 1 under ambient CO2 conditions resulted in an increase in this toxin (12-fold).


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin , Mycotoxins/analysis , Avena/microbiology , Fusarium/metabolism , Carbon Dioxide/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , T-2 Toxin/analysis , Edible Grain/microbiology
10.
Toxins (Basel) ; 14(9)2022 08 28.
Article in English | MEDLINE | ID: mdl-36136530

ABSTRACT

The contamination of oats with Fusarium toxins poses a high risk for food safety. Among them, trichothecenes are the most frequently reported in European oats, especially in northern countries. The environmental conditions related to the climate change scenario might favour a distribution shift in Fusarium species and the presence of these toxins in Southern European countries. In this paper, we present an ambitious work to determine the species responsible for trichothecene contamination in Spanish oats and to compare the results in the United Kingdom (UK) using a metataxonomic approach applied to both oat grains and soil samples collected from both countries. Regarding T-2 and HT-2 toxin producers, F. langsethiae was detected in 38% and 25% of the oat samples from the UK and Spain, respectively, and to the best of our knowledge, this is the first report of the detection of this fungus in oats from Spain. The relevant type B trichothecene producer, F. poae, was the most frequently detected Fusarium species in oats from both origins. Other important trichothecene producers, such as the Fusarium tricinctum species complex or Fusarium cerealis, were also frequently detected in oat fields. Many Fusarium toxins, including T-2 and HT-2 toxins, deoxynivalenol, or nivalenol, were detected in oat samples. The results obtained in this work revealed a clear change in the distribution of trichothecene producers and the necessity to establish the potential of these species to colonize oats and their ability to produce mycotoxins.


Subject(s)
Fusarium , Mycotoxins , Trichothecenes, Type B , Trichothecenes , Avena/microbiology , Edible Grain/chemistry , Food Contamination/analysis , Mycotoxins/analysis , Soil , Spain , T-2 Toxin/analogs & derivatives , Trichothecenes/analysis
11.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35731221

ABSTRACT

Advances in sequencing technologies as well as development of algorithms and workflows have made it possible to generate fully phased genome references for organisms with nonhaploid genomes such as dikaryotic rust fungi. To enable discovery of pathogen effectors and further our understanding of virulence evolution, we generated a chromosome-scale assembly for each of the 2 nuclear genomes of the oat crown rust pathogen, Puccinia coronata f. sp. avenae (Pca). This resource complements 2 previously released partially phased genome references of Pca, which display virulence traits absent in the isolate of historic race 203 (isolate Pca203) which was selected for this genome project. A fully phased, chromosome-level reference for Pca203 was generated using PacBio reads and Hi-C data and a recently developed pipeline named NuclearPhaser for phase assignment of contigs and phase switch correction. With 18 chromosomes in each haplotype and a total size of 208.10 Mbp, Pca203 has the same number of chromosomes as other cereal rust fungi such as Puccinia graminis f. sp. tritici and Puccinia triticina, the causal agents of wheat stem rust and wheat leaf rust, respectively. The Pca203 reference marks the third fully phased chromosome-level assembly of a cereal rust to date. Here, we demonstrate that the chromosomes of these 3 Puccinia species are syntenous and that chromosomal size variations are primarily due to differences in repeat element content.


Subject(s)
Basidiomycota , Puccinia , Avena/genetics , Avena/microbiology , Basidiomycota/genetics , Chromosomes , Edible Grain/genetics , Genomics , Plant Diseases/microbiology
12.
Toxins (Basel) ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: mdl-35622560

ABSTRACT

Over recent decades, the Norwegian cereal industry has had major practical and financial challenges associated with the occurrence of Fusarium head blight (FHB) pathogens and their associated mycotoxins in cereal grains. Deoxynivalenol (DON) is one of the most common Fusarium-mycotoxins in Norwegian oats, however T-2 toxin (T2) and HT-2 toxin (HT2) are also commonly detected. The aim of our study was to rank Nordic spring oat varieties and breeding lines by content of the most commonly occurring Fusarium mycotoxins (DON and HT2 + T2) as well as by the DNA content of their respective producers. We analyzed the content of mycotoxins and DNA of seven fungal species belonging to the FHB disease complex in grains of Nordic oat varieties and breeding lines harvested from oat field trials located in the main cereal cultivating district in South-East Norway in the years 2011-2020. Oat grains harvested from varieties with a high FHB resistance contained on average half the levels of mycotoxins compared with the most susceptible varieties, which implies that choice of variety may indeed impact on mycotoxin risk. The ranking of oat varieties according to HT2 + T2 levels corresponded with the ranking according to the DNA levels of Fusarium langsethiae, but differed from the ranking according to DON and Fusarium graminearum DNA. Separate tests are therefore necessary to determine the resistance towards HT2 + T2 and DON producers in oats. This creates practical challenges for the screening of FHB resistance in oats as today's screening focuses on resistance to F. graminearum and DON. We identified oat varieties with generally low levels of both mycotoxins and FHB pathogens which should be preferred to mitigate mycotoxin risk in Norwegian oats.


Subject(s)
Mycotoxins , T-2 Toxin , Avena/microbiology , Edible Grain/chemistry , Mycotoxins/analysis , Plant Breeding , T-2 Toxin/analogs & derivatives , T-2 Toxin/analysis
13.
Article in English | MEDLINE | ID: mdl-35385360

ABSTRACT

Oats (Avena sativa L.) are well known for their nutritional properties but are susceptible to the growth of different Fusarium fungi resulting in mycotoxin contamination of harvested oats. In this study, oat samples from harvest years 2011 to 2017 were preselected for their suitability as milling oats for food purposes with DON contents below 1750 µg/kg. The reduction of DON, T-2 and HT-2 toxins during the commercial de-hulling process was analysed. While the average reduction for the sum of T-2 and HT-2 toxins in large oat kernels was 85%, the reduction for thin kernels was 66%. The reduction for DON was about 60% and did not differ for the two kernel fractions. In laboratory de-hulling experiments, milling oat samples and de-hulled oat kernels with known DON, T-2 and HT-2 toxin content were correlated with the associated DNA amount of Fusarium graminearum, Fusarium culmorum and Fusarium langsethiae. The reduction of the Fusarium DNA amount after de-hulling was comparable to the reduction of the associated mycotoxins. Notably, the correlation between F. langsethiae DNA amounts and the sum of T-2 and HT-2 toxin contents was R2 = 0.69 in milling oats and it rose to R2 = 0.85 in de-hulled oat kernels. In laboratory tests, at least one third of the initial levels of DON and the sum of T-2 and HT-2 toxins could be removed by polishing off the first parts of the outer layers; two thirds remained in the polished oat kernels. These observations indicate that de-hulling alone may not be completely sufficient to remove mycotoxin contamination in oats. These findings are of high importance in the discussion of determining legal maximum levels for DON or the sum of T-2 and HT-2 toxins in intermediate and final products.


Subject(s)
Fusarium , Mycotoxins , Avena/microbiology , Edible Grain/chemistry , Food Contamination/analysis , Mycotoxins/analysis , T-2 Toxin/analogs & derivatives , Trichothecenes
14.
Toxins (Basel) ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35051022

ABSTRACT

Fusarium head blight (FHB) is an economically important plant disease. Some Fusarium species produce mycotoxins that cause food safety concerns for both humans and animals. One especially important mycotoxin-producing fungus causing FHB is Fusarium graminearum. However, Fusarium species form a disease complex where different Fusarium species co-occur in the infected cereals. Effective management strategies for FHB are needed. Development of the management tools requires information about the diversity and abundance of the whole Fusarium community. Molecular quantification assays for detecting individual Fusarium species and subgroups exist, but a method for the detection and quantification of the whole Fusarium group is still lacking. In this study, a new TaqMan-based qPCR method (FusE) targeting the Fusarium-specific elongation factor region (EF1α) was developed for the detection and quantification of Fusarium spp. The FusE method was proven as a sensitive method with a detection limit of 1 pg of Fusarium DNA. Fusarium abundance results from oat samples correlated significantly with deoxynivalenol (DON) toxin content. In addition, the whole Fusarium community in Finnish oat samples was characterized with a new metabarcoding method. A shift from F. culmorum to F. graminearum in FHB-infected oats has been detected in Europe, and the results of this study confirm that. These new molecular methods can be applied in the assessment of the Fusarium community and mycotoxin risk in cereals. Knowledge gained from the Fusarium community analyses can be applied in developing and selecting effective management strategies for FHB.


Subject(s)
Avena/microbiology , Food Contamination/analysis , Food Microbiology/methods , Fusarium/isolation & purification , Mycotoxins/analysis , Real-Time Polymerase Chain Reaction/methods , DNA Barcoding, Taxonomic , Edible Grain/microbiology , Finland , Fusarium/classification , Limit of Detection , Mycobiome
15.
Nature ; 602(7896): 280-286, 2022 02.
Article in English | MEDLINE | ID: mdl-34937943

ABSTRACT

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Subject(s)
Avena , Plant Roots , Plant Shoots , Transplants , Triticum , Ascomycota/pathogenicity , Avena/embryology , Avena/microbiology , Hypocotyl , Meristem , Plant Roots/embryology , Plant Roots/microbiology , Plant Shoots/embryology , Plant Shoots/microbiology , Triticum/embryology , Triticum/microbiology
16.
Toxins (Basel) ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34941693

ABSTRACT

The current study investigated the fungal diversity in freshly harvested oat samples from the two largest production regions in Brazil, Paraná (PR) and Rio Grande do Sul (RS), focusing primarily on the Fusarium genus and the presence of type B trichothecenes. The majority of the isolates belonged to the Fusarium sambucinum species complex, and were identified as F. graminearum sensu stricto (s.s.), F. meridionale, and F. poae. In the RS region, F. poae was the most frequent fungus, while F. graminearum s.s. was the most frequent in the PR region. The F. graminearum s.s. isolates were 15-ADON genotype, while F. meridionale and F. poae were NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR and RS were contaminated with type B trichothecenes, respectively. Oat grains from PR were predominantly contaminated with DON, whereas NIV was predominant in oats from RS. Twenty-four percent of the samples were contaminated with DON at levels higher than Brazilian regulations. Co-contamination of DON, its derivatives, and NIV was observed in 84% and 57.7% of the samples from PR and RS, respectively. The results provide new information on Fusarium contamination in Brazilian oats, highlighting the importance of further studies on mycotoxins.


Subject(s)
Avena/chemistry , Avena/microbiology , Fusarium/isolation & purification , Trichothecenes, Type B/analysis , Brazil , Edible Grain/chemistry , Edible Grain/microbiology , Food Contamination/analysis , Fusarium/classification , Fusarium/genetics , Mycotoxins/analysis , Trichothecenes/analysis
17.
Toxins (Basel) ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34822522

ABSTRACT

Fusarium head blight (FHB) is one of the most serious diseases of small-grain cereals worldwide, resulting in yield reduction and an accumulation of the mycotoxin deoxynivalenol (DON) in grain. Weather conditions are known to have a significant effect on the ability of fusaria to infect cereals and produce toxins. In the past 10 years, severe outbreaks of FHB, and grain DON contamination exceeding the EU health safety limits, have occurred in countries in the Baltic Sea region. In this study, extensive data from field trials in Sweden, Poland and Lithuania were analysed to identify the most crucial weather variables for the ability of Fusarium to produce DON. Models were developed for the prediction of DON contamination levels in harvested grain exceeding 200 µg kg-1 for oats, spring barley and spring wheat in Sweden and winter wheat in Poland, and 1250 µg kg-1 for spring wheat in Lithuania. These models were able to predict high DON levels with an accuracy of 70-81%. Relative humidity (RH) and precipitation (PREC) were identified as the weather factors with the greatest influence on DON accumulation in grain, with high RH and PREC around flowering and later in grain development and ripening correlated with high DON levels. High temperatures during grain development and senescence reduced the risk of DON accumulation. The performance of the models, based only on weather variables, was relatively accurate. In future studies, it might be of interest to determine whether inclusion of variables such as pre-crop, agronomic factors and crop resistance to FHB could further improve the performance of the models.


Subject(s)
Avena/chemistry , Edible Grain/chemistry , Food Contamination/analysis , Hordeum/chemistry , Trichothecenes/analysis , Triticum/chemistry , Weather , Avena/microbiology , Baltic States , Edible Grain/microbiology , Hordeum/microbiology , Lithuania , Models, Theoretical , Poland , Seasons , Sweden , Trichothecenes/chemistry , Triticum/microbiology
18.
Toxins (Basel) ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34678974

ABSTRACT

Alternaria fungi dominate the grain microbiota in many regions of the world; therefore, the detection of species that are able to produce mycotoxins has received much attention. A total of 178 grain samples of wheat, barley and oat obtained from the Urals and West Siberia regions of Russia in 2017-2019 were included in the study. Grain contamination with Alternaria fungi belonging to sections Alternaria and Infectoriae was analysed using qPCR with specific primers. The occurrence of four mycotoxins produced by Alternaria, AOH, AME, TEN, and TeA, was defined by HPLC-MS/MS. Alternaria DNA was found in all analysed grain samples. The prevalence of DNA of Alternaria sect. Alternaria fungi (range 53 × 10-4-21,731 × 10-4 pg/ng) over the DNA of Alternaria sect. Infectoriae (range 11 × 10-4‒4237 × 10-4 pg/ng) in the grain samples was revealed. Sixty-two percent of grain samples were contaminated by at least two Alternaria mycotoxins. The combination of TEN and TeA was found most often. Eight percent of grain samples were contaminated by all four mycotoxins, and only 3% of samples were free from the analysed secondary toxic metabolites. The amounts varied in a range of 2-53 µg/kg for AOH, 3-56 µg/kg for AME, 3-131 µg/kg for TEN and 9-15,000 µg/kg for TeA. To our knowledge, a new global maximum level of natural contamination of wheat grain with TeA was detected. A positive correlation between the amount of DNA from Alternaria sect. Alternaria and TeA was observed. The significant effects of cereal species and geographic origin of samples on the amounts of DNA and mycotoxins of Alternaria spp. in grain were revealed. Barley was the most heavily contaminated with fungi belonging to both sections. The content of AOH in oat grain was, on average, higher than that found in wheat and barley. The content of TEN in the grain of barley was lower than that in wheat and similar to that in oat. The content of TeA did not depend on the cereal crop. The effect of weather conditions (summer temperature and rainfall) on the final fungal and mycotoxin contamination of grain was discussed. The frequent co-occurrence of different Alternaria fungi and their mycotoxins in grain indicates the need for further studies investigating this issue.


Subject(s)
Alternaria/isolation & purification , Edible Grain/microbiology , Mycotoxins/analysis , Alternaria/genetics , Avena/microbiology , DNA, Fungal/isolation & purification , Food Contamination/analysis , Hordeum/microbiology , Russia , Triticum/microbiology , Weather
19.
Toxins (Basel) ; 13(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34564673

ABSTRACT

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016-2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.


Subject(s)
Avena/chemistry , Avena/microbiology , Food Contamination/analysis , Fusarium/chemistry , Fusarium/genetics , Mycotoxins/analysis , Plant Diseases/microbiology , DNA, Fungal/isolation & purification , Edible Grain/chemistry , Edible Grain/microbiology , Manitoba , Phylogeny , Species Specificity
20.
Toxins (Basel) ; 13(8)2021 08 05.
Article in English | MEDLINE | ID: mdl-34437416

ABSTRACT

The efficacy of ethylene-vinyl alcohol copolymer films (EVOH) incorporating the essential oil components cinnamaldehyde (CINHO), citral (CIT), isoeugenol (IEG), or linalool (LIN) to control growth rate (GR) and production of T-2 and HT-2 toxins by Fusarium sporotrichioides cultured on oat grains under different temperature (28, 20, and 15 °C) and water activity (aw) (0.99 and 0.96) regimes was assayed. GR in controls/treatments usually increased with increasing temperature, regardless of aw, but no significant differences concerning aw were found. Toxin production decreased with increasing temperature. The effectiveness of films to control fungal GR and toxin production was as follows: EVOH-CIT > EVOH-CINHO > EVOH-IEG > EVOH-LIN. With few exceptions, effective doses of EVOH-CIT, EVOH-CINHO, and EVOH-IEG films to reduce/inhibit GR by 50%, 90%, and 100% (ED50, ED90, and ED100) ranged from 515 to 3330 µg/culture in Petri dish (25 g oat grains) depending on film type, aw, and temperature. ED90 and ED100 of EVOH-LIN were >3330 µg/fungal culture. The potential of several machine learning (ML) methods to predict F. sporotrichioides GR and T-2 and HT-2 toxin production under the assayed conditions was comparatively analyzed. XGBoost and random forest attained the best performance, support vector machine and neural network ranked third or fourth depending on the output, while multiple linear regression proved to be the worst.


Subject(s)
Fusarium , Oils, Volatile , Polyvinyls , T-2 Toxin/analogs & derivatives , Avena/chemistry , Avena/microbiology , Food Packaging , Fusarium/growth & development , Fusarium/metabolism , Machine Learning , T-2 Toxin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...