Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Carbohydr Polym ; 338: 122236, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763717

ABSTRACT

Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal ß-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-ß-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.


Subject(s)
Avicennia , Fermentation , Fruit , Gastrointestinal Microbiome , Pectins , Prebiotics , Pectins/chemistry , Fruit/chemistry , Avicennia/chemistry , Avicennia/microbiology , Humans , Gastrointestinal Microbiome/drug effects , Molecular Weight
2.
An Acad Bras Cienc ; 96(2): e20231075, 2024.
Article in English | MEDLINE | ID: mdl-38747797

ABSTRACT

Mangroves buffer metals transfer to coastal areas though strong accumulation in sediments making necessary to investigate metals' bioavailability to plants at the rhizosphere. This work evaluates the effect of mangrove root activity, through iron plaque formation, on the mobility of iron and copper its influence on metals' uptake, and translocation through simultaneous histochemical analysis. The Fe2+ and Fe3+ contents in porewaters ranged from 0.02 to 0.11 µM and 1.0 to 18.3 µg.l-1, respectively, whereas Cu concentrations were below the method's detection limit (<0.1 µM). In sediments, metal concentrations ranged from 12,800 to 39,500 µg.g-1 for total Fe and from 10 to 24 µg.g-1 for Cu. In iron plaques, Cu concentrations ranged from 1.0 to 160 µg.g-1, and from 19.4 to 316 µg.g-1 in roots. Fe concentrations were between 605 to 36,000 µg.g-1 in the iron plaques and from 2,100 to 62,400 µg.g-1 in roots. Histochemical characterization showed Fe3+ predominance at the tip of roots and Fe2+ in more internal tissues. A. schaueriana showed significant amounts of Fe in pneumatophores and evident translocation of this metal to leaves and excretion through salt glands. Iron plaques formation was essential to the Fe and Cu regulation and translocation in tissues of mangrove plants.


Subject(s)
Avicennia , Copper , Iron , Plant Roots , Rhizophoraceae , Rhizophoraceae/chemistry , Iron/analysis , Iron/metabolism , Brazil , Copper/analysis , Avicennia/chemistry , Plant Roots/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Biological Availability , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
3.
Mar Pollut Bull ; 187: 114594, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36652853

ABSTRACT

This study focuses on the assessment of heavy metals (HM) concentration and pollution status of the Nizampatnam Bay, east coast of India, from mangrove plant parts (roots and leaves) and sediment samples. This is the first of its kind work (comparison of data from both mangrove and sediment samples) from the third largest mangrove ecosystem in India. To carry out this work, plant (Avicennia mariana) and sediment samples were collected from five stations. The collected samples were carefully subjected to the laboratory methods and heavy metal concentrations were determined by using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The obtained results were juxtaposed with the optimal values of world surface pollution rock averages, and noticed heavy metals such as Cd and Cu exceed the optimal values. To know the contamination levels and the chemical elements that contribute to the pollution, various environmental indices, viz., contamination factor, enrichment factor, geoaccumulation index, and pollution load index were, carried out on the sediment sample data. To ascertain the mangrove plant's capacity (in the study area) for accumulation and translocation of heavy metals in different parts of the plants, factors such as bio-concentration and translocation were calibrated.


Subject(s)
Avicennia , Metals, Heavy , Water Pollutants, Chemical , Avicennia/chemistry , Ecosystem , Geologic Sediments/chemistry , Bays , Environmental Monitoring , Metals, Heavy/analysis , India , Water Pollutants, Chemical/analysis
4.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645624

ABSTRACT

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Subject(s)
Avicennia , Avicennia/chemistry , Avicennia/genetics , Avicennia/metabolism , Phylogeny , Transcription Factors/metabolism , Genes, Plant , Ecosystem
5.
J Cancer Res Ther ; 17(4): 879-886, 2021.
Article in English | MEDLINE | ID: mdl-34528536

ABSTRACT

PURPOSE: Medical halophytes plants are potent sources of bioactive secondary metabolite components used against different diseases. Avicenniamarina one of the typical halophytes plant species used in folk medicine to treat smallpox, rheumatism, and ulcer. Despite the richness of A.marina with polyphenolic, flavonoids, terpenoid, and terpene, contents remain poorly investigated against cancer types. Consequently, to explore the function-composition relationship of A.marina hexane leaves crude extract, the current study designed to investigate the cytotoxicity, apoptotic and antiproliferative impacts on the colon (HCT-116), liver (HepG2), and breast (MCF-7) cancer cell lines. MATERIALS AND METHODS: Therefore, the cytotoxicity impact screening carried out by Sulforhodamine-B assay. While, the initiation of the apoptosis evaluated by chromatin condensing, early apoptosis, late apoptosis and the formation and appearance of apoptotic bodies. On the other hand, the flow cytometry used to identify the phase of inhibition where the determined IC50 value used. While, the chemical composition of the hexane extract was detected using liquid chromatography-mass spectrometry/mass spectrometry. RESULTS: Revealed that hexane extract showed a weak induction of apoptosis despite the formation of apoptotic bodies and the high cell inhibitory effect on all tested cell lines with IC50 values (23.7 ± 0.7, 44.9 ± 0.93, 79.55 ± 0.57) µg/ml on HCT-116, HepG2, and MCF-7, respectively. Furthermore, it showed the ability to inhibit cell cycle in G0/G1 for HCT-116, S phase for HepG2, and MCF-7. CONCLUSION: In the light of these results, the current study suggests that A.marina leaves hexane extract may be considered as a candidate for further anticancer drug development investigations.


Subject(s)
Apoptosis , Avicennia/chemistry , Cell Proliferation , Neoplasms/pathology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Cell Cycle , HCT116 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Neoplasms/drug therapy
6.
Arch Pharm (Weinheim) ; 354(9): e2100120, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34085721

ABSTRACT

Medicinal plants are valuable sources of different active constituents that are known to have important pharmacological activities including anticancer effects. Lupeol, a pentacyclic triterpenoid, present in many medicinal plants, has a wide range of biological activities. Although the anticancer activity of lupeol was reported, the published data are inconsistent and the clear mechanism of action has never been assigned. The current study aims at investigating the anticancer specificity and mechanism of lupeol isolated from Avicennia marina, which grows in the desert of the United Arab Emirates. The compound was purified by chromatography and identified by spectroscopy. Compared with a negative control, lupeol caused significant (p < .001) growth inhibitory activity on MCF-7 and Hep3B parental and resistant cells by 45%, 46%, 72%, and 35%, respectively. The mechanism of action of lupeol was further explored by measuring its effect on key players in cancer development and progression, BCL-2 anti-apoptotic and BAX pro-apoptotic proteins. Lupeol significantly (p < .01) downregulated BCL-2 gene expression in parental and resistant Hep3B cells by 33 and 3.5 times, respectively, contributing to the induction of apoptosis in Hep3B cells, whereas it caused no effect on BAX. Furthermore, the immunoblotting analysis revealed that lupeol cleaved the executioner caspase-3 into its active form. Interestingly, lupeol showed no significant effect on the proliferation of monocytes, whereas it caused an increase in the sub-G1 population and a reduction in the apoptosis rates of monocytes at 48 and 72 h, indicative of no immuno-inflammatory responses. Collectively, lupeol can be considered as promising effective and safe anticancer agent, particularly against Hep3B cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Avicennia/chemistry , Pentacyclic Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation/drug effects , Female , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , MCF-7 Cells , Monocytes/drug effects , Monocytes/metabolism , Pentacyclic Triterpenes/isolation & purification , Proto-Oncogene Proteins c-bcl-2/genetics , Time Factors
7.
PLoS One ; 16(4): e0249764, 2021.
Article in English | MEDLINE | ID: mdl-33857218

ABSTRACT

Biogenic copper nanoparticles (Cu NPs) were synthesized using the aqueous crude extract of mangrove leaves, Avicennia marina (CE). GC-MS metabolite profiling of CE showed that their carbohydrates are mainly composed of D-mannose (29.21%), D-fructose, (18.51%), L-sorbose (12.91%), D-galactose (5.47%) and D-Talose (5.21%). Ultra-fine nanoparticles of 11.60 ±4.65 nm comprising Cu2O and Cu(OH)2 species were obtained with a carbohydrate and phenolic content of 35.6±3.2% and 3.13±0.05 mgGA/g, respectively. The impact of the biogenic Cu NPs on wheat seedling growth was dose-dependent. Upon treatment with 0.06 mg/mL of Cu NPs, the growth was promoted by 172.78 ± 23.11 and 215.94 ± 37.76% for wheat root and shoot, respectively. However, the lowest relative growth % of 81.94 ± 11.70 and 72.46 ± 18.78% were recorded for wheat root and shoot, respectively when applying 0.43 mg/mL of Cu NPs. At this concentration, peroxidase activity (POX) of the germinated wheat seeds also decreased, while ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO) activities increased. Higher uptake of copper was observed in the root relative to the shoot implying the accumulation of the nanoparticles in the former. The uptake was also higher than that of the commercial Cu NPs, which showed an insignificant effect on the seedling growth. By treating the wheat leaves in foliar application with 0.06 mg/mL of Cu NPs, their contents of Chlorophyll a, Chlorophyll b, and total chlorophyll were enhanced after 21 days of application. Meanwhile, the high concentration (0.43 mg/mL) of Cu NPs was the most effective in reducing the leaf content of chlorophyll (a, b, and total) after the same time of application. The findings of this study manifest the potential of utilizing controlled doses of the prepared biogenic Cu NPs for inhibition or stimulation of seedling growth.


Subject(s)
Avicennia/chemistry , Chlorophyll/metabolism , Copper/administration & dosage , Nanoparticles/administration & dosage , Seedlings/metabolism , Triticum/metabolism , Copper/chemistry , Germination , Nanoparticles/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/growth & development , Triticum/drug effects , Triticum/growth & development
8.
Molecules ; 26(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921289

ABSTRACT

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Subject(s)
Avicennia/chemistry , COVID-19 Drug Treatment , Phytochemicals/therapeutic use , SARS-CoV-2/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/therapeutic use , Avicennia/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Fruit/chemistry , Fruit/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/therapeutic use , Phenylpropionates/chemistry , Phenylpropionates/metabolism , Phenylpropionates/therapeutic use , Phytochemicals/chemistry , Phytochemicals/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
9.
Mar Drugs ; 19(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925208

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish's skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score -8.5 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.


Subject(s)
Antiviral Agents/pharmacology , Avicennia/chemistry , Epsilonretrovirus/drug effects , Fish Diseases/prevention & control , Plant Extracts/pharmacology , Retroviridae Infections/veterinary , Tumor Virus Infections/veterinary , Animals , Antiviral Agents/isolation & purification , Epsilonretrovirus/metabolism , Epsilonretrovirus/pathogenicity , Fish Diseases/virology , Gene Products, gag/antagonists & inhibitors , Gene Products, gag/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/isolation & purification , Protein Conformation , Retroviridae Infections/prevention & control , Retroviridae Infections/virology , Structure-Activity Relationship , Tumor Virus Infections/prevention & control , Tumor Virus Infections/virology , Virus Release/drug effects
10.
Nat Prod Res ; 35(2): 282-288, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31177836

ABSTRACT

One new sesquiterpenoid, 1-methoxypestabacillin B (1), along with one known sesquiterpenoid (2) and six known chrodrimanin-type meroterpenoids (3‒8) were obtained from the solid cultures of a mangrove endophytic fungus Diaporthe sp. SCSIO 41011. Their structures including the absolute configuration at C-6 of compound 1, were determined by extensive spectroscopic analyses and ECD calculations. Meanwhile, the X-ray crystal structures and absolute configurations of two previously reported chrodrimanins E (3) and H (6), are described for the first time. All the compounds were examined for HIV latency-reversal and anti-influenza A virus activities.


Subject(s)
Ascomycota/chemistry , Avicennia/chemistry , Terpenes/chemistry , Crystallography, X-Ray , Fungi , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Sesquiterpenes/chemistry , Spectrometry, Mass, Electrospray Ionization
11.
Pharm Biol ; 58(1): 1211-1220, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33280468

ABSTRACT

CONTEXT: Fruit of Avicennia marina (Forsk.) Vierh. (Acanthaceae) is used as a Chinese herb. Studies have found that it contains marinoid J, a novel phenylethanoid glycoside (PG) compound, but its neuroprotective functions are largely unknown. OBJECTIVE: This study evaluated the effects of marinoid J on vascular dementia (VD) and determined its potential mechanisms of action. MATERIALS AND METHODS: The VD model was established by the ligation of the bilateral common carotid artery in Sprague-Dawley rats, who received daily intragastrically administration of saline, marinoid J (125 or 500 mg/kg body weight/d), or oxiracetam (250 mg/kg body weight/d) for 14 days (20 rats in each group). The Morris water maze (MWM) was used to evaluate cognitive performance. The hippocampus was subjected to histological and proteomic analyses. RESULTS: Marinoid J shortened the escape latency of VD rats (31.07 ± 3.74 s, p < 0.05). It also decreased malondialdehyde (MDA) (27.53%) and nitric oxide (NO) (20.41%) while increasing superoxide dismutase (SOD) (11.26%) and glutathione peroxidase (GSH-Px) (20.38%) content in hippocampus tissues. Proteomic analysis revealed 45 differentially expressed proteins (DEPs) in marinoid J-treated VD rats, which included angiotensin-converting enzyme (ACE), keratin 18 (KRT18), cluster of differentiation 34 (CD34), and synaptotagmin II (SYT2). CONCLUSIONS: Marinoid J played a role in protecting hippocampal neurons by regulating a set of proteins that influence oxidative stress and apoptosis, this effect may thereby alleviate the symptoms of VD rats. Thus, pharmacological manipulation of marinoid J may offer a novel opportunity for VD treatment.


Subject(s)
Avicennia/chemistry , Cognitive Dysfunction/drug therapy , Dementia, Vascular/drug therapy , Fruit/chemistry , Nootropic Agents/therapeutic use , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Dementia, Vascular/complications , Dementia, Vascular/psychology , Gene Expression Regulation/drug effects , Hippocampus/pathology , Learning/drug effects , Male , Memory/drug effects , Morris Water Maze Test , Proteomics , Rats , Rats, Sprague-Dawley
12.
Comb Chem High Throughput Screen ; 23(9): 945-954, 2020.
Article in English | MEDLINE | ID: mdl-32342807

ABSTRACT

BACKGROUND: Avicennia alba Blume, is a well-known mangrove plant used in traditional medicinal practices for several human ailments. OBJECTIVE: The study aimed at the evaluation of antidiabetic, antioxidant, anti-inflammatory and cytotoxic activities of A. alba ethanolic leaf (AAL) and bark (AAB) extract along with phytochemical investigation. METHODS: In vitro antidiabetic study was done by α-amylase, α-glucosidase enzyme inhibition assay; antioxidant study by DPPH, ABTS, superoxide, and metal chelating assays, antiinflammatory study by protein denaturation assay. The cytotoxicity study was done on TC1 murine cell line. Further, GC-MS analysis was carried out for AAL extracts. RESULTS: AAL exhibited better antidiabetic activities with IC50 values of 1.18 and 0.87 mg/ml against α-amylase and α-glucosidase enzymes respectively. The AAL exhibited better ABTS, superoxide scavenging and metal chelating potential with IC50 values of 0.095, 0.127 and 0.444 mg/ml. However, AAB showed higher DPPH scavenging potential with IC50 value of 0.163 mg/ml. The AAL also exhibited higher protein denaturation potential with IC50 value of 0.370 mg/ml. The bark extract exhibited better cytotoxic activity as compared to leaf extracts on the TC1 murine cell line. The phytochemical study revealed higher total phenol (25.64 mg GAE/g), flavonoid (205.09 mg QE/g), and tannin content (251.17 mg GAE/g) in AAL. The GC-MS analysis revealed the presence of several compounds in AAL extract. CONCLUSION: The result of the present study highlights the antidiabetic, antioxidant and cytotoxic activities of mangrove plant Avicennia alba.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Avicennia/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Drug Discovery , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Mice , Phenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Plant Extracts/pharmacology , Tannins/chemistry
13.
Mar Pollut Bull ; 151: 110832, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056625

ABSTRACT

To better understand the uptake, biotransformation and physiological response to tetrabromobisphenol A (TBBPA) in mangrove plants, a short term 14-day hydroponic assay with two mangrove species, Avicennia marina (A. marina) and Kandelia obovata (K. obovata), was conducted. Results showed that two mangrove species could uptake, translocate and accumulate TBBPA from solution. The hydroxylation and debromination metabolites of TBBPA, including OH-TBBPA, TriBBPA, MonoBBPA, and BPA, were found in both mangroves for the first time. The high-level TBBPA suppressed the growth and increased malondialdehyde (MDA) content of K. obovata, did not pose any negative affect on A. marina. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of K. obovata significantly increased in the 7th day, whereas, SOD and POD activities at high-levels of TBBPA became comparable to the control in the 14th day. Contrastingly, the antioxidant enzymes activities of A. marina were positively stimulated by TBBPA during the 14-day of observation, indicating that A. marina was more tolerant of TBBPA.


Subject(s)
Avicennia/metabolism , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/metabolism , Avicennia/chemistry , Biotransformation , Hydroponics , Polybrominated Biphenyls/analysis , Water Pollutants, Chemical/analysis
14.
Med Arch ; 74(6): 421-427, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33603265

ABSTRACT

INTRODUCTION: Diabetes mellitus is a common disease worldwide. It is considered as the third leading cause of death, in the developed countries followed by heart diseases and cancer. AIM: The aim of this study was to assess the effectiveness of the aqueous fraction of R. mucronata and A. marina leaves grown in Saudi Arabia alone or in combination as antidiabetic agents and explore its effect on the antioxidants status. METHODS: One hundred and twenty male Wistar albino rats were divided into 8 groups were utilized in this study. Streptozotocin (STZ) was utilized for induction of diabetes. The effects of daily oral administration of aqueous extract from the leaves of R. mucronata (400 mg/kg BW), A. marina (400 mg/kg BW) and the combination of both plant extracts for 6 weeks were evaluated on blood glucose, insulin, tissues' antioxidants as well as pancreatic immunohistochemistry in normal, (STZ)-induced diabetic rats. RESULTS: Oral administration of the plants extracts significantly reduced (p ≤ 0.001) serum glucose, insulin and improved the antioxidants status in the liver compared to the untreated rats. Immunohistochemically, the pancreas of diabetic rats treated with R. mucronata revealed a few islets ß-cells (2-3%/ HPF) with positive caspase-3. CONCLUSION: The extract of R. mucronata exhibited a promising antidiabetic, antioxidant and tissue enhancing effects compared with A. marina alone or in combination.


Subject(s)
Antioxidants/therapeutic use , Apoptosis/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Plant Extracts/therapeutic use , Streptozocin/adverse effects , Animals , Avicennia/chemistry , Humans , Male , Models, Animal , Phytotherapy , Rats , Rats, Wistar , Rhizophoraceae/chemistry , Saudi Arabia
15.
Nat Prod Res ; 34(16): 2403-2406, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30600710

ABSTRACT

Mangrove plants are endowed with various biologically active compounds which have potent antibacterial and antioxidant properties. In present study, a bioactivity-guided fractionation for antibacterial and antioxidant active metabolites from the twigs of Avicennia officinalis collected from Kuala Selangor Nature Park, Selangor, Malaysia gave 13 major fractions. The antibacterial activity of A. officinalis fractions using well-diffusion showed strong selectivity on the Gram-positive bacteria (Staphylococcus epidermidis, S. aureus and Bacillus subtilis) with minimum inhibition concentration (MIC) values of 0.156-5.00 mg/mL. However, no antibacterial activities were observed on the Gram-negative bacteria (Vibrio cholera, Enterobacter cloacae and Escherichia coli). The active antibacterial fractions were further isolated using several chromatographic techniques to give two naphthofuranquinones, namely, avicenol C (1) and stenocarpoquinone B (2). Meanwhile, the antioxidant activity of A. officinalis fractions were evaluated using DPPH radical scavenging assay exhibited low antioxidant activities. Molecular structure of the naphthofuranquinones was elucidated using 1 D and 2 D NMR spectroscopy.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Avicennia/chemistry , Plant Extracts/chemistry , Quinones/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Malaysia , Microbial Sensitivity Tests , Molecular Structure , Quinones/pharmacology
16.
J Nat Prod ; 82(8): 2211-2219, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31373815

ABSTRACT

Five new tetralones, daldiniones A-E (1-5), three new chromones, 7-hydroxy-5-methoxy-2,3-dimethylchromone (9), 5-methoxy-2-propylchromone (10), and 7-ethyl-8-hydroxy-6-methoxy-2,3-dimethylchromone (11), and two new lactones, helicascolides D and E (16 and 17), together with nine known metabolites (6-8, 12-15, and 18-19) were isolated from the mangrove-derived fungus Daldinia eschscholtzii HJ004. The structures and absolute configurations of the new compounds were determined by analyzing MS and NMR data and utilizing GIAO based 13C NMR chemical shift calculations and quantum chemical electronic circular dichroism (ECD) calculations. Compounds 9, 13, and 18 showed inhibitory activities against α-glucosidase with IC50 values of 13, 15, and 16 µM, respectively.


Subject(s)
Avicennia/chemistry , Polyketides/isolation & purification , Xylariales/chemistry , Avicennia/microbiology , Molecular Structure , Polyketides/chemistry , Spectrum Analysis/methods , Xylariales/isolation & purification
17.
An Acad Bras Cienc ; 91(1): e20180171, 2019.
Article in English | MEDLINE | ID: mdl-30994761

ABSTRACT

Avicennia schaueriana is found in Brazilian mangrove coast. The cytotoxicity in vitro of the Aqueous Extract of Leaves of Avicennia schaueriana (AELAs) and the healing activity of the plant in cream on mice skin wounds were evaluated in this study. The cytotoxic evaluation was performed on Vero cells. The healing activity was evaluated on mice treated during 5, 10 and 15 days with cream at 5%, solution of sodium chloride at 0.9% and dexpanthenol in cream at 5%. The extract did not show cytotoxicity, but showed mitogenic activity (100µg/ml). In morphometric analysis, the percentage of wound contraction after 10 days was higher in dexpanthenol group (93.41%). In 15 days, the lowest percentage of contraction was observed in the dexpanthenol group (94.41%) and the highest in the AELAs cream group (98.50%). In histomorphometry the dexpanthenol showed the lowest length of re-epithelialization in 10 days. In 15 days, the AELAs cream group showed 100% of re-epithelialization. The number of fibroblasts found in AELAs cream group was higher than the saline solution in 10 days. In 15 days, AELAs cream group maintained a higher amount of fibroblasts when compared to the others. A. schaueriana did not show cytotoxicity. Furthermore, topical application of AELAs cream decreased the wound area, stimulated the re-epithelialization and increased the number of fibroblasts. The species A. schaueriana could become a topical treatment in tissue repair process.


Subject(s)
Avicennia/chemistry , Plant Extracts/pharmacology , Skin Cream/pharmacology , Wound Healing/drug effects , Administration, Cutaneous , Animals , Cells, Cultured , Chlorocebus aethiops , Female , Mice , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/pharmacology , Plant Leaves/chemistry , Reproducibility of Results , Skin/pathology , Time Factors , Treatment Outcome , Vero Cells
18.
Mar Drugs ; 17(4)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003533

ABSTRACT

Mangroves are ecologically important plants in marine habitats that occupy the coastlines of many countries. In addition to their key ecological importance, various parts of mangroves are widely used in folklore medicine and claimed to effectively manage a panoply of human pathologies. To date, no comprehensive attempt has been made to compile and critically analyze the published literature in light of its ethnopharmacological uses. This review aims to provide a comprehensive account of the morphological characteristics, ethnobotany, global distribution, taxonomy, ethnopharmacology, phytochemical profiles, and pharmacological activities of traditionally used mangroves. Out of 84 mangrove species, only 27 species were found to be traditionally used, however not all of them are pharmacologically validated. The most common pharmacological activities reported were antioxidant, antimicrobial, and antidiabetic properties. Mangroves traditionally reported against ulcers have not been extensively validated for possible pharmacological properties. Terpenoids, tannins, steroids, alkaloids, flavonoids, and saponins were the main classes of phytochemicals isolated from mangroves. Given that mangroves have huge potential for a wide array of medicinal products and drug discovery to prevent and treat many diseases, there is a dire need for careful investigations substantiated with accurate scientific and clinical evidence to ensure safety and efficient use of these plants and validate their pharmacological properties and toxicity.


Subject(s)
Avicennia/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rhizophoraceae/chemistry , Animals , Avicennia/classification , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , Rhizophoraceae/classification
19.
Chemosphere ; 226: 413-420, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30951935

ABSTRACT

Cd has high activity and bioavailability and is a poisonous element to plants. As a critical ecosysterm, mangroves are subjected to serious Cd pollution. In this research, the hypothesis was presented that improving Fe bioavailability would alleviate Cd phytotoxicity to Avicennia marina (Forsk.) Vierh. To test this, we examined the effect of four exogenous Fe and three Cd concentrations on A. marina. The results showed that a significant positive correlation excited between moderate exogenous Fe concentration and Cd tolerance of A. marina. Moderate exogenous Fe concentration directly or indirectly promoted the formation of Fe plaque, which immobilised more Cd on the root surface and decreased Cd absorption in roots. Furthermore, an exogenous Fe application increased plant biomass and Fe accumulation in A. marina tissues. This improved the competition between Fe and Cd within the plants. Therefore, an Fe application facilitated a decrease in Cd toxicity within A. marina. Simultaneously, a moderate Fe concentration caused an increase in low-molecular-weight organic acid (LMWOA) secretion from the roots. Meanwhile, Cd can be chelated/complexed by LMWOAs. It also played a crucial role in Cd detoxification in A. marina. In conclusion, Fe application accelerated the growth and enhanced Cd tolerance of A. marina. Therefore, improving Fe bioavailability will protect mangroves from Cd contamination.


Subject(s)
Avicennia/drug effects , Cadmium/toxicity , Iron/therapeutic use , Plant Roots/drug effects , Avicennia/chemistry , Iron/pharmacology , Plant Roots/chemistry
20.
Environ Sci Pollut Res Int ; 26(9): 9146-9160, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30715704

ABSTRACT

The mangrove ecosystems are known to efficiently sequester trace metals both in sediments and plant biomass. However, less is known about the chemistry of rare earth elements (REE) in the coastal environments, especially in the world's largest mangrove province, the Sundarban. Here, the concentration of REE in the sediment and plant organs of eight dominant mangrove species (mainly Avicennia sp.) in the Indian Sundarban was measured to assess REE sources, distribution, and bioaccumulation state. Results revealed that light REE (LREE) were more concentrated than the heavy REE (HREE) (128-144 mg kg-1 and 12-15 mg kg-1, respectively) in the mangrove sediments, with a relatively weak positive europium anomaly (Eu/Eu* = 1.03-1.14) with respect to North American shale composite. The primary source of REE was most likely linked to aluminosilicate weathering of crustal materials, and the resultant increase in LREE in the detritus. Vertical distribution of REE in one of the long cores from Lothian Island was altered by mangrove root activity and dependent on various physicochemical properties in the sediment (e.g., Eh, pH, organic carbon, and phosphate). REE uptake by plants was higher in the below-ground parts than in the above-ground plant tissues (root = 3.3 mg kg-1, leaf + wood = 1.7 mg kg-1); however, their total concentration was much lower than in the sediment (149.5 mg kg-1). Species-specific variability in bioaccumulation factor and translocation factor was observed indicating different REE partitioning and varying degree of mangrove uptake efficiency. Total REE stock in plant (above + live below ground) was estimated to be 168 g ha-1 with LREE contributing ~ 90% of the stock. This study highlighted the efficiency of using REE as a biological proxy in determining the degree of bioaccumulation within the mangrove environment.


Subject(s)
Avicennia/chemistry , Geologic Sediments/chemistry , Metals, Rare Earth/analysis , Avicennia/metabolism , Ecosystem , Environmental Monitoring , India , Islands , Phosphates/analysis , Phosphates/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Trace Elements/analysis , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...