Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
1.
Luminescence ; 39(5): e4738, 2024 May.
Article in English | MEDLINE | ID: mdl-38719576

ABSTRACT

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV-vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10-200 µg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the 'Analytical GREEnness (AGREE)' scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.


Subject(s)
Azetidinecarboxylic Acid , Carbon , Dihydropyridines , Quantum Dots , Spectrometry, Fluorescence , Dihydropyridines/analysis , Dihydropyridines/chemistry , Carbon/chemistry , Azetidinecarboxylic Acid/analysis , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/chemistry , Quantum Dots/chemistry , Green Chemistry Technology , Tablets/analysis , Fluorescent Dyes/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Molecular Structure
2.
J Assoc Physicians India ; 72(1): 22-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38736070

ABSTRACT

INTRODUCTION: Azelnidipine, a selective calcium channel blocker, effectively lowers blood pressure (BP) and heart rate (HR) in hypertensive patients, as demonstrated in a retrospective real-world evidence (RWE) study in Indian patients. MATERIALS AND METHODS: This was a retrospective cohort study that included 882 patients aged 18 years or older who had been on azelnidipine treatment for the last 3 months for mild to moderate hypertension (HTN). A structured proforma was utilized to gather data from prescribing physicians to assess the efficacy of azelnidipine (8 and 16 mg) as monotherapy or in combination with other antihypertensive drugs. The primary endpoints of the study were to capture changes in systolic blood pressure (SBP) and diastolic BP (DBP) from baseline to the subsequent visits (4 and 12 weeks), while the secondary endpoints were to measure similar changes in the diabetic group and to estimate the proportion of patients achieving target BP of <130/80 mm Hg and <140/90 mm Hg, respectively. RESULTS: The overall mean reduction of systolic/diastolic BP from baseline to 12 weeks was 13.92/7.91 mm Hg (p-value < 0.0001). The mean reduction of systolic/diastolic BP from baseline to 12 weeks was 11.77/7.43 mm Hg (p-value < 0.0001) in newly diagnosed HTN patients, while in known cases of HTN, it was 16.50/8.48 mm Hg (p-value < 0.0001). In the diabetic group, the mean reduction was 15.35/8.69 mm Hg (p-value < 0.0001). Overall the study showed that in 44 (4.99%) and 408 (46.26%) patients, target BP of <130/80 mm Hg and <140/90 mm Hg, respectively was achieved. The mean change in HR from baseline was a reduction of 5.22 beats/minute. CONCLUSION: Azelnidipine can be an effective antihypertensive drug to treat mild to moderate HTN in Indian patients.


Subject(s)
Antihypertensive Agents , Azetidinecarboxylic Acid , Blood Pressure , Calcium Channel Blockers , Dihydropyridines , Hypertension , Humans , Dihydropyridines/therapeutic use , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/therapeutic use , Retrospective Studies , Hypertension/drug therapy , Male , Calcium Channel Blockers/therapeutic use , Female , Middle Aged , India , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Adult , Aged , Treatment Outcome
3.
Drug Metab Pharmacokinet ; 55: 101000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458122

ABSTRACT

In this study, a physiologically based pharmacokinetic (PBPK) model of the cytochrome P450 3A (CYP3A) substrate azelnidipine was developed using in vitro and clinical data to predict the effects of azole antifungals on azelnidipine pharmacokinetics. Modeling and simulations were conducted using the Simcyp™ PBPK simulator. The azelnidipine model consisted of a full PBPK model and a first-order absorption model. CYP3A was assumed as the only azelnidipine elimination route, and CYP3A clearance was optimized using the pharmacokinetic profile of single-dose 5-mg azelnidipine in healthy participants. The model reproduced the results of a clinical drug-drug interaction study and met validation criteria. PBPK model simulations using azole antifungals (itraconazole, voriconazole, posaconazole, fluconazole, fosfluconazole) and azelnidipine or midazolam (CYP3A index substrate) were performed. Increases in the simulated area under the plasma concentration-time curve from time zero extrapolated to infinity with inhibitors were comparable between azelnidipine (range, 2.11-6.47) and midazolam (range, 2.26-9.22), demonstrating that azelnidipine is a sensitive CYP3A substrate. Increased azelnidipine plasma concentrations are expected when co-administered with azole antifungals, potentially affecting azelnidipine safety. These findings support the avoidance of azole antifungals in patients taking azelnidipine and demonstrate the utility of PBPK modeling to inform appropriate drug use.


Subject(s)
Antifungal Agents , Azetidinecarboxylic Acid/analogs & derivatives , Dihydropyridines , Midazolam , Humans , Midazolam/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A , Drug Interactions , Itraconazole , Models, Biological
4.
New Phytol ; 242(6): 2586-2603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523234

ABSTRACT

Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Gene Expression Regulation, Plant , Iron Deficiencies , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Stress, Physiological/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Iron/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/metabolism , Plants, Genetically Modified
5.
Angew Chem Int Ed Engl ; 63(20): e202401411, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38500479

ABSTRACT

A succinct synthetic approach to mugineic acids and 2'-hydroxynicotianamine was established. Unlike all other synthetic methods, this approach utilized epoxide ring-opening reactions to form two C-N bonds and is characterized by the absence of redox reactions. Mugineic acid was synthesized from three readily available fragments on a gram scale in 6 steps. The protected 2'-hydroxynicotianamine was also synthesized in 4 steps, and the dansyl group, serving as a fluorophore, was introduced through a click reaction after propargylation of the 2'-hydroxy group. The dansyl-labeled nicotianamine (NA) iron complexes were internalized by oocytes overexpressing ZmYS1 (from maize) or PAT1 (from human) transporters, indicating successful transport of the synthesized NA-probe through these transporters.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Epoxy Compounds , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , Humans , Molecular Structure , Azetidinecarboxylic Acid/metabolism , Azetidinecarboxylic Acid/chemistry
6.
Hypertens Res ; 47(4): 1017-1023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38337004

ABSTRACT

Increased blood pressure variability (BPV) was shown to be associated with cardiovascular morbidities and/or mortalities. There are various types of BPV depending on time intervals of BP measurements, ranging from beat-to-beat to visit-to-visit or year-to-year. We previously found that continuous infusion of noradrenaline (NA) for 14 days increased short-term BPV every 15 min in rats. The aims of this study were to examine (1) whether NA infusion increases very short-term beat-to-beat BPV, (2) the effects of azelnidipine and hydralazine on NA-induced BPV, and (3) whether baroreceptor reflex sensitivity (BRS) is affected by NA or NA plus those vasodilators. Nine-week-old Wistar rats infused subcutaneously with 30 µg/h NA were orally treated with or without 9.7 mg/day azelnidipine or 5.9 mg/day hydralazine over 14 days. BP levels were continuously monitored via abdominal aortic catheter with a telemetry system in an unrestrained condition. Standard deviations (SDs) were used to evaluate beat-to-beat BPV and BPV every 15 min which was obtained by averaging BP levels for 10-s segment at each time point. BRS was determined by a sequence analysis. Continuous NA infusion over 14 days increased average BP, beat-to-beat BPV, and BPV every 15 min, lowering BRS. Comparing the two vasodilators, hydralazine reduced BP elevation by NA; meanwhile, azelnidipine alleviated BPV augmentation, preserving BRS, despite a smaller BP reduction. Thus, NA infusion increased both very short- and short-term BPV concomitantly with impaired BRS, while azelnidipine had an inhibitory effect, possibly independent of BP-lowering, on those types of BPV and impairment of BRS.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Dihydropyridines , Norepinephrine , Vasodilator Agents , Rats , Animals , Blood Pressure , Vasodilator Agents/pharmacology , Norepinephrine/pharmacology , Rats, Wistar , Hydralazine/pharmacology
7.
J Labelled Comp Radiopharm ; 66(13): 428-434, 2023 11.
Article in English | MEDLINE | ID: mdl-37755147

ABSTRACT

We, herein, report the synthesis of 13 C2 -labeled natural products from the mugineic acid and avenic acid family. These phytosiderophores ("plant iron carriers") are built up from non-proteinogenic amino acids and play a key role in micronutrient uptake in gramineous plants. In this work, two central building blocks are prepared from labeled starting materials (13 C2 -bromoacetic acid, 13 C2 -glycine) and further employed in our recently reported divergent, branched synthetic strategy delivering eight isotopically labeled phytosiderophores. The required labeled building blocks (13 C2 -l-allylglycine and a related hydroxylated derivative) were prepared via enantioselective phase-transfer catalysis and enantio- and diastereoselective aldol condensation with a chiral auxiliary, respectively, both potentially valuable themselves for other synthetic routes toward labeled (natural) products.


Subject(s)
Iron , Siderophores , Humans , Siderophores/chemistry , Siderophores/metabolism , Iron/chemistry , Iron/metabolism , Biological Transport , Azetidinecarboxylic Acid/chemistry , Azetidinecarboxylic Acid/metabolism
8.
Molecules ; 28(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375363

ABSTRACT

L-Azetidine-2-carboxylic acid (AZE) is a non-protein amino acid that shares structural similarities with its proteogenic L-proline amino acid counterpart. For this reason, AZE can be misincorporated in place of L-proline, contributing to AZE toxicity. In previous work, we have shown that AZE induces both polarization and apoptosis in BV2 microglial cells. However, it is still unknown if these detrimental effects involve endoplasmic reticulum (ER) stress and whether L-proline co-administration prevents AZE-induced damage to microglia. Here, we investigated the gene expression of ER stress markers in BV2 microglial cells treated with AZE alone (1000 µM), or co-treated with L-proline (50 µM), for 6 or 24 h. AZE reduced cell viability, nitric oxide (NO) secretion and caused a robust activation of the unfolded protein response (UPR) genes (ATF4, ATF6, ERN1, PERK, XBP1, DDIT3, GADD34). These results were confirmed by immunofluorescence in BV2 and primary microglial cultures. AZE also altered the expression of microglial M1 phenotypic markers (increased IL-6, decreased CD206 and TREM2 expression). These effects were almost completely prevented upon L-proline co-administration. Finally, triple/quadrupole mass spectrometry demonstrated a robust increase in AZE-bound proteins after AZE treatment, which was reduced by 84% upon L-proline co-supplementation. This study identified ER stress as a pathogenic mechanism for AZE-induced microglial activation and death, which is reversed by co-administration of L-proline.


Subject(s)
Microglia , Proline , Proline/pharmacology , Proline/chemistry , Azetidinecarboxylic Acid/pharmacology , Azetidinecarboxylic Acid/chemistry , Amino Acids , Endoplasmic Reticulum Stress
9.
J Pept Sci ; 29(6): e3473, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36579722

ABSTRACT

Crystal structures of N-acetylated proline and homologs with four- and six-membered rings (azetidine carboxylic acid and piperidine carboxylic acid) were obtained and compared. The distinctly different conformations of the four-, five-, and six-membered rings reflect Bayer strain, n → π* interaction, and allylic strain, and result in crystal lattices with a zigzag structure.


Subject(s)
Azetidinecarboxylic Acid , Proline , Proline/chemistry , Molecular Conformation , Azetidinecarboxylic Acid/chemistry , Carboxylic Acids
10.
Viruses ; 14(6)2022 06 05.
Article in English | MEDLINE | ID: mdl-35746699

ABSTRACT

Flaviviruses, represented by Zika and dengue virus (ZIKV and DENV), are widely present around the world and cause various diseases with serious consequences. However, no antiviral drugs have been clinically approved for use against them. Azelnidipine (ALP) is a dihydropyridine calcium channel blocker and has been approved for use as an antihypertensive drug. In the present study, ALP was found to show potent anti-flavivirus activities in vitro and in vivo. ALP effectively prevented the cytopathic effect induced by ZIKV and DENV and inhibited the production of viral RNA and viral protein in a dose-dependent manner. Moreover, treatment with 0.3 mg/kg of ALP protected 88.89% of mice from lethal challenge. Furthermore, using the time-of-drug-addition assay, the enzymatic inhibition assay, the molecular docking, and the surface plasmon resonance assay, we revealed that ALP acted at the replication stage of the viral infection cycle by targeting the viral RNA-dependent RNA polymerase. These findings highlight the potential for the use of ALP as an antiviral agent to combat flavivirus infections.


Subject(s)
Dengue , Dihydropyridines , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Azetidinecarboxylic Acid/analogs & derivatives , Dengue/drug therapy , Dihydropyridines/metabolism , Dihydropyridines/pharmacology , Flavivirus/physiology , Mice , Molecular Docking Simulation , RNA-Dependent RNA Polymerase , Zika Virus/physiology , Zika Virus Infection/drug therapy
11.
J Neuropathol Exp Neurol ; 81(6): 414-433, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35521963

ABSTRACT

The naturally occurring imino acid azetidine-2-carboxylic acid (Aze) is consumed by humans and can be misincorporated in place of proline in myelin basic protein (MBP) in vitro. To determine Aze effects on the mammalian CNS in vivo, adult CD1 mice were given Aze orally or intraperitoneally. Clinical signs reminiscent of MBP-mutant mice occurred with 600 mg/kg Aze exposure. Aze induced oligodendrocyte (OL) nucleomegaly and nucleoplasm clearing, dilated endoplasmic reticulum, cytoplasmic vacuolation, abnormal mitochondria, and Aze dose-dependent apoptosis. Immunohistochemistry demonstrated myelin blistering and nuclear translocation of unfolded protein response (UPR)/proinflammatory molecules (ATF3, ATF4, ATF6, eIF2α, GADD153, NFκB, PERK, XBP1), MHC I expression, and MBP cytoplasmic aggregation in OL. There were scattered microglial nodules in CNS white matter (WM); other CNS cells appeared unaffected. Mice given Aze in utero and postnatally showed more marked effects than their dams. These OL, myelin, and microglial alterations are found in normal-appearing WM (NAWM) in multiple sclerosis (MS) patients. Thus, Aze induces a distinct oligodendrogliopathy in mice that recapitulates MS NAWM pathology without leukocyte infiltration. Because myelin proteins are relatively stable throughout life, we hypothesize that Aze misincorporation in myelin proteins during myelinogenesis in humans results in a progressive UPR that may be a primary process in MS pathogenesis.


Subject(s)
Azetidinecarboxylic Acid , Multiple Sclerosis , Animals , Azetidinecarboxylic Acid/chemistry , Azetidinecarboxylic Acid/pharmacology , Humans , Mammals , Mice , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , Myelin Basic Protein , Myelin Sheath/pathology , Oligodendroglia/pathology , Proline/chemistry
12.
J Mol Model ; 28(3): 71, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35226207

ABSTRACT

Nicotianamine (NA) is one of the metal-chelating molecules found in higher plants in abundance. Synthesized by the enzyme nicotianamine synthase, NA has a major role in the transport of iron in plant tissues. This research paper deals with the coordination chemistry of the possible complexes of NA, [FeII (NA)]-, and [FeIII (NA)] in detail, from a theoretical standpoint. The chemical computations on the [FeII (NA)]- and [FeIII (NA)] complexes show that NA can bind with both Fe (+ 2) and Fe (+ 3) ions. The calculations confirm that the [FeIII (NA)] is thermodynamically more stable in comparison with [FeII (NA)]-, while [FeII (NA)]- is kinetically more stable than [FeIII (NA)]. Under the physiological conditions prevailing in plant tissues, [FeIII (NA)] can undergo reduction, but the auto-oxidation of [FeII (NA)]- to [FeIII (NA)] is prevented. In summary, NA can translocate Fe ions within plant tissues, wherever required, both as Fe (+ 2) and Fe (+ 3) complexes.


Subject(s)
Azetidinecarboxylic Acid , Iron , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/chemistry , Azetidinecarboxylic Acid/metabolism , Iron/metabolism , Models, Theoretical , Plants
13.
Plant Physiol ; 188(4): 2131-2145, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35099564

ABSTRACT

The Yang cycle is involved in many essential metabolic pathways in plant growth and development. As extended products of the Yang cycle, the function and regulation network of ethylene and polyamines are well characterized. Nicotianamine (NA) is also a product of this cycle and works as a key metal chelator for iron (Fe) homeostasis in plants. However, interactions between the Yang cycle and NA biosynthesis remain unclear. Here, we cloned maize interveinal chlorosis 1 (mic1), encoding a 5'-methylthioadenosine nucleosidase (MTN), that is essential for 5'-methylthioadenosine (MTA) salvage and NA biosynthesis in maize (Zea mays). A single base G-A transition in the fourth exon of mic1 causes a Gly to Asp change, resulting in increased MTA, reduced Fe distribution, and growth retardation of seedlings. Knockout of ZmMIC1 but not its paralog ZmMTN2 by CRISPR/Cas9 causes interveinal chlorosis, indicating ZmMIC1 is mainly responsible for MTN activity in maize. Transcriptome analysis showed a typical response of Fe deficiency. However, metabolic analysis revealed dramatically reduced NA content in mic1, suggesting NA biosynthesis was impaired in the mutant. Exogenous application of NA transiently reversed the interveinal chlorosis phenotype of mic1 seedlings. Moreover, the mic1 mutant overexpressing a NA synthase gene not only recovered from interveinal chlorosis and growth retardation but was also fertile. These findings provide a link between the Yang cycle and NA biosynthesis, which highlights an aspect of Fe homeostasis regulation in maize.


Subject(s)
Anemia, Hypochromic , Zea mays , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/metabolism , Gene Expression Regulation, Plant , Homeostasis , Zea mays/genetics , Zea mays/metabolism
14.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35039017

ABSTRACT

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Subject(s)
Genome, Plant/genetics , Iron/metabolism , Multigene Family/genetics , Plant Proteins/genetics , Zea mays/genetics , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/metabolism , Biological Transport , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Genes, Reporter , Homeostasis , Iron Deficiencies , Phylogeny , Plant Proteins/metabolism , Protein Transport , Recombinant Fusion Proteins , Siderophores/metabolism , Transaminases/genetics , Transaminases/metabolism , Zea mays/enzymology , Zea mays/physiology
15.
Pest Manag Sci ; 78(5): 1946-1952, 2022 May.
Article in English | MEDLINE | ID: mdl-35085420

ABSTRACT

BACKGROUND: Powdery mildew is one of the fungal diseases commonly occurring in the process of cucurbits protected and open cultivation. Cucumbers, melons and pumpkins are extremely susceptible. The secondary metabolites produced by plants are important sources of fungicides with low toxicity and environment-friendly characteristics. The aim of this study was to reveal the main active ingredient in the crude extracts of Disporopsis aspera rhizomes that inhibit cucurbits powdery mildew and evaluate its activities. RESULTS: In this study, the crude extracts of Disporopsis aspera rhizomes were found to exhibit excellent antifungal activity aganist Podosphaera xanthii, a causal agent of cucurbits powdery mildew. Based on the bioassay-guided method, l-azetidine-2-carboxylic acid (l-Aze) was isolated from this genus for the first time. l-Aze showed unique curative and eradicative activity against Podosphaera xanthii in vivo, which has never been reported before. Microscopic observation revealed that the curative spraying of l-Aze could effectively inhibit the mycelial growth, resulting in hollow parts of the mycelia, not forming conidiophores, and interrupting the life cycle of powdery mildew. The eradicative spraying of l-Aze caused the fracture of mycelia and deformity of conidiophores, which could not continue to produce conidia. CONCLUSION: l-Aze was the main active ingredient of D. aspera against Podosphaera xanthii, which had both curative and eradicative effects. The results provided a strong possibility of using the crude extracts of D. aspera rhizomes and its main effective component, l-Aze as biocontrol agents to control cucurbits powdery mildew.


Subject(s)
Antifungal Agents , Azetidinecarboxylic Acid , Ascomycota , Complex Mixtures , Plant Diseases/microbiology , Plant Diseases/prevention & control , Rhizome
16.
Plant J ; 109(5): 1168-1182, 2022 03.
Article in English | MEDLINE | ID: mdl-34902177

ABSTRACT

Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.


Subject(s)
Oryza , Triticum , Azetidinecarboxylic Acid/analogs & derivatives , Bread/analysis , Edible Grain/metabolism , Flour/analysis , Oryza/genetics , Oryza/metabolism , Plant Breeding , Triticum/genetics , Triticum/metabolism , Zinc/metabolism
17.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290138

ABSTRACT

Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.


Subject(s)
Azetidinecarboxylic Acid/toxicity , Heat-Shock Response , Nuclear Envelope/physiology , Protein Folding , Proteostasis/drug effects , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/growth & development , Arsenites/toxicity , Hydrogen Peroxide/toxicity , Nuclear Envelope/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Sodium Compounds/toxicity , Ubiquitin/metabolism , Ubiquitination
18.
Biomolecules ; 11(5)2021 05 10.
Article in English | MEDLINE | ID: mdl-34068552

ABSTRACT

Strategies boosting both innate and adaptive immunity have great application prospects in cancer immunotherapy. Antibodies dual blocking the innate checkpoint CD47 and adaptive checkpoint PD-L1 or TIGIT could achieve durable anti-tumor effects. However, a small molecule dual blockade of CD47/SIRPα and TIGIT/PVR pathways has not been investigated. Here, an elevated expression of CD47 and PVR was observed in tumor tissues and cell lines analyzed with the GEO datasets and by flow cytometry, respectively. Compounds approved by the FDA were screened with the software MOE by docking to the potential binding pockets of SIRPα and PVR identified with the corresponding structural analysis. The candidate compounds were screened by blocking and MST binding assays. Azelnidipine was found to dual block CD47/SIRPα and TIGIT/PVR pathways by co-targeting SIRPα and PVR. In vitro, azelnidipine could enhance the macrophage phagocytosis when co-cultured with tumor cells. In vivo, azelnidipine alone or combined with irradiation could significantly inhibit the growth of MC38 tumors. Azelnidipine also significantly inhibits the growth of CT26 tumors, by enhancing the infiltration and function of CD8+ T cell in tumor and systematic immune response in the tumor-draining lymph node and spleen in a CD8+ T cell dependent manner. Our research suggests that the anti-hypertensive drug azelnidipine could be repositioned for cancer immunotherapy.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Dihydropyridines/pharmacology , Drug Repositioning/methods , Gene Expression Regulation, Neoplastic/drug effects , Immunotherapy/methods , Neoplasms/therapy , Animals , Azetidinecarboxylic Acid/pharmacology , CD47 Antigen/antagonists & inhibitors , Calcium Channel Blockers/pharmacology , Cell Line, Tumor , Cricetinae , Disease Models, Animal , Humans , Immunity, Innate , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Virus/antagonists & inhibitors , T-Lymphocytes/drug effects
19.
Sci Rep ; 11(1): 7391, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795709

ABSTRACT

Plants produce toxic secondary metabolites as defense mechanisms against phytopathogenic microorganisms and predators. L-azetidine-2-carboxylic acid (AZC), a toxic proline analogue produced by members of the Liliaceae and Agavaciae families, is part of such a mechanism. AZC causes a broad range of toxic, inflammatory and degenerative abnormalities in human and animal cells, while it is known that some microorganisms have evolved specialized strategies for AZC resistance. However, the mechanisms underlying these processes are poorly understood. Here, we identify a widespread mechanism for AZC resistance in fungi. We show that the filamentous ascomycete Aspergillus nidulans is able to not only resist AZC toxicity but also utilize it as a nitrogen source via GABA catabolism and the action of the AzhA hydrolase, a member of a large superfamily of detoxifying enzymes, the haloacid dehalogenase-like hydrolase (HAD) superfamily. This detoxification process is further assisted by the NgnA acetyltransferase, orthologue of Mpr1 of Saccharomyces cerevisiae. We additionally show that heterologous expression of AzhA protein can complement the AZC sensitivity of S. cerevisiae. Furthermore, a detailed phylogenetic analysis of AzhA homologues in Fungi, Archaea and Bacteria is provided. Overall, our results unravel a widespread mechanism for AZC resistance among microorganisms, including important human and plant pathogens.


Subject(s)
Aspergillus nidulans/drug effects , Aspergillus nidulans/metabolism , Azetidinecarboxylic Acid/chemistry , Azetidinecarboxylic Acid/metabolism , Biodegradation, Environmental , Computational Biology , Computer Simulation , Drug Resistance, Fungal , Gene Expression Regulation , Genotype , Inflammation , Microscopy, Confocal , Phylogeny , Phytochemicals , Plasmids/metabolism , Proline/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
20.
J Biol Chem ; 296: 100418, 2021.
Article in English | MEDLINE | ID: mdl-33837730

ABSTRACT

The nicotianamine-iron chelate [NA-Fe2+], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe2+ is assimilated from the diet, however, remains unclear. The current investigation by Murata et al. has identified the proton-coupled amino acid transporter 1 (PAT1) as the main mechanism by which NA-Fe2+ is absorbed in the mammalian intestine. Discovery of this new form of dietary iron and elucidation of its pathway of intestinal absorption may lead to the development of improved iron supplementation approaches.


Subject(s)
Amino Acid Transport Systems/metabolism , Azetidinecarboxylic Acid/analogs & derivatives , Iron Chelating Agents/metabolism , Symporters/metabolism , Animals , Azetidinecarboxylic Acid/metabolism , Intestinal Absorption , Iron, Dietary/metabolism , Mice , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...