Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.018
Filter
1.
Food Chem ; 452: 139527, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703741

ABSTRACT

Tryptamine is a biogenic amine that affects organoleptic quality through the generation of off-odours in foods. Herein, imine-based covalent organic frameworks (COFs) were synthesized via Schiff base reactions and postmodified with click chemistry to generate azide-functionalized COFs with tunable azide units on the walls. The combination of molecular imprinting with COFs enabled the specific recognition of the targets. The resulting optosensing system (azide-functionalized COFs@MIPs) was used as a sample-to-answer analyser for detecting tryptamine (detection time within 10 min). A linear relationship was observed for the fluorescence response to tryptamine concentrations in the range of 3-120 µg L-1, with a limit of detection of 1.74 µg L-1. The recoveries for spiked samples were satisfactory, with relative standard deviations <9.90%. The optosensing system is a potential tool for the quantitative detection of tryptamine in meat products because of its lower cost, shorter processing time, and simpler processing steps compared to conventional chromatographic techniques.


Subject(s)
Azides , Food Contamination , Meat Products , Molecularly Imprinted Polymers , Tryptamines , Tryptamines/analysis , Tryptamines/chemistry , Azides/chemistry , Meat Products/analysis , Food Contamination/analysis , Molecularly Imprinted Polymers/chemistry , Animals , Metal-Organic Frameworks/chemistry , Limit of Detection
2.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731638

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Subject(s)
Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
3.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792171

ABSTRACT

Azido-modified nucleosides have been extensively explored as substrates for click chemistry and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous) electrons are discussed. Regio and stereoselectivity of incorporation of an azido group ("radical arm") into the frame of nucleoside and selective generation of NCRs under reductive conditions, which often produce the same radical species that are observed upon ionization events due to radiation and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified precursors other than azidonucleosides are also discussed but only with the direct relation to the same/similar NCRs derived from azidonucleosides.


Subject(s)
Azides , Nucleosides , Nucleosides/chemistry , Azides/chemistry , Nitrogen/chemistry , Free Radicals/chemistry , Click Chemistry
4.
Bioorg Med Chem Lett ; 108: 129815, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38795737

ABSTRACT

We report the use of trimethylsilyl azide and Selectfluor to implement a standard protocol targeted at the prenylated nucleic acid known as i6A-RNA. After optimizing the conditions, we applied this method to regulate a wide range of i6A-RNA species using synthetic imidazole-based probes (I-IV). We observed that prenylated nucleic acid plays a crucial role in the cell hemostasis in A549 cell lines.


Subject(s)
Azides , Click Chemistry , Halogenation , Imidazoles , Humans , Imidazoles/chemistry , Imidazoles/chemical synthesis , Azides/chemistry , A549 Cells , RNA/chemistry , RNA/metabolism , Molecular Structure , RNA Stability/drug effects
5.
Anal Chem ; 96(23): 9576-9584, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38808923

ABSTRACT

GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.


Subject(s)
DNA , Nucleic Acid Hybridization , Humans , DNA/chemistry , GPI-Linked Proteins/metabolism , Animals , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/chemistry , Fluorescent Dyes/chemistry , Azides/chemistry
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692110

ABSTRACT

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Subject(s)
Molecularly Imprinted Polymers , Urea , Urethane , Wine , Urethane/analysis , Urethane/chemistry , Molecularly Imprinted Polymers/chemistry , Urea/analysis , Urea/chemistry , Wine/analysis , Spectrometry, Fluorescence/methods , Azides/chemistry , Limit of Detection , Adsorption , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods
7.
Org Lett ; 26(18): 3997-4001, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38687048

ABSTRACT

The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.


Subject(s)
Antiviral Agents , Azides , Nucleosides , Azides/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Molecular Structure , Nucleosides/chemistry , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Glycosylation
8.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38591457

ABSTRACT

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Subject(s)
Click Chemistry , Cycloaddition Reaction , Polymers , Urate Oxidase , Urate Oxidase/chemistry , Click Chemistry/methods , Polymers/chemistry , Cyclooctanes/chemistry , Humans , Azides/chemistry , Alkynes/chemistry
9.
Anal Methods ; 16(17): 2751-2759, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38634398

ABSTRACT

Exosomes have gained recognition as valuable reservoirs of biomarkers, holding immense potential for early cancer detection. Consequently, there is a pressing need for the development of an economical and highly sensitive exosome detection methodology. In this work, we present a fluorescence method for breast cancer-derived exosome detection based on Cu-triggered click reaction of azide-modified CD63 aptamer and alkyne functionalized Pdots. The detection threshold for the exosomes obtained from the breast cancer serum was determined to be 6.09 × 107 particles per µL, while the measurable range spanned from 6.50 × 107 to 1.30 × 109 particles per µL. The employed methodology achieved notable success in accurately distinguishing breast cancer patients from healthy individuals through serum analysis. The application of this method showcases the significant potential for early exosome analysis in the clinical diagnosis of breast cancer patients.


Subject(s)
Alkynes , Aptamers, Nucleotide , Azides , Biosensing Techniques , Breast Neoplasms , Click Chemistry , Exosomes , Tetraspanin 30 , Humans , Breast Neoplasms/blood , Female , Exosomes/chemistry , Tetraspanin 30/metabolism , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Azides/chemistry , Alkynes/chemistry , Fluorescent Dyes/chemistry , Polymers/chemistry
10.
Anal Chem ; 96(18): 6995-7004, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38666367

ABSTRACT

Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.


Subject(s)
Click Chemistry , Gold , Lipopolysaccharides , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Lipopolysaccharides/analysis , Humans , Azides/chemistry , Limit of Detection , Copper/chemistry , Alkynes/chemistry , Aptamers, Nucleotide/chemistry
11.
Biomacromolecules ; 25(5): 2780-2791, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38613487

ABSTRACT

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.


Subject(s)
Alkynes , Azides , Click Chemistry , Cycloaddition Reaction , Drug Delivery Systems , Polyethylene Glycols , Alkynes/chemistry , Polyethylene Glycols/chemistry , Azides/chemistry , Drug Delivery Systems/methods , Click Chemistry/methods , Dendrimers/chemistry , Dendrimers/chemical synthesis , Polymers/chemistry
12.
Angew Chem Int Ed Engl ; 63(22): e202403539, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38556813

ABSTRACT

The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.


Subject(s)
Alcohol Dehydrogenase , Biocatalysis , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/genetics , Protein Engineering , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/chemistry , Aldo-Keto Reductases/genetics , Phenylalanine/chemistry , Phenylalanine/metabolism , Phenylalanine/analogs & derivatives , Azides/chemistry
13.
ACS Appl Mater Interfaces ; 16(17): 21534-21545, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634566

ABSTRACT

Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.


Subject(s)
Click Chemistry , DNA , DNA/chemistry , Biosensing Techniques/methods , Surface Properties , Animals , Mice , Azides/chemistry , Biotin/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Ligands , Avidin/chemistry
14.
J Control Release ; 370: 302-309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663752

ABSTRACT

Displaying antibodies on carrier surfaces facilitates precise targeting and delivery of drugs to diseased cells. Here, we report the synthesis of antibody-lipid conjugates (ALCs) through site-selective acetylation of Lys 248 in human Immunoglobulin G (IgG) and the development of antibody-functionalized red blood cells (immunoRBC) for targeted drug delivery. ImmunoRBC with the HER2-selective antibody trastuzumab displayed on the surface (called Tras-RBC) was constructed following a three-step procedure. First, a peptide-guided, proximity-induced reaction transferred an azidoacetyl group to the ε-amino group of Lys 248 in the Fc domain. Second, the azide-modified IgG was subsequently conjugated with dibenzocyclooctyne (DBCO)-functionalized lipids via strain-promoted azide-alkyne cycloaddition (SPAAC) to result in ALCs. Third, the lipid portion of ALCs was then inserted into the cell membranes, and IgGs were displayed on red blood cells (RBCs) to construct immunoRBCs. We then loaded Tras-RBC with a photosensitizer (PS), Zinc phthalocyanine (ZnPc), to selectively target HER2-overexpressing cells, release ZnPc into cancer cells following photolysis, and induce photodynamic cytotoxicity in the cancer cells. This work showcases assembling immunoRBCs following site-selective lipid conjugation on therapeutic antibodies and the targeted introduction of PS into cancer cells. This method could apply to the surface functionalization of other membrane-bound vesicles or lipid nanoparticles for antibody-directed drug delivery.


Subject(s)
Drug Delivery Systems , Erythrocytes , Indoles , Isoindoles , Lipids , Trastuzumab , Humans , Erythrocytes/drug effects , Trastuzumab/chemistry , Trastuzumab/administration & dosage , Lipids/chemistry , Indoles/chemistry , Indoles/administration & dosage , Zinc Compounds , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/administration & dosage , Receptor, ErbB-2/immunology , Immunoconjugates/chemistry , Immunoconjugates/administration & dosage , Immunoglobulin G/chemistry , Cell Line, Tumor , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/chemistry , Azides/chemistry
15.
Commun Biol ; 7(1): 459, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627603

ABSTRACT

Cellular glucose uptake is a key feature reflecting metabolic demand of cells in physiopathological conditions. Fluorophore-conjugated sugar derivatives are widely used for monitoring glucose transporter (GLUT) activity at the single-cell level, but have limitations in in vivo applications. Here, we develop a click chemistry-based post-labeling method for flow cytometric measurement of glucose uptake with low background adsorption. This strategy relies on GLUT-mediated uptake of azide-tagged sugars, and subsequent intracellular labeling with a cell-permeable fluorescent reagent via a copper-free click reaction. Screening a library of azide-substituted monosaccharides, we discover 6-azido-6-deoxy-D-galactose (6AzGal) as a suitable substrate of GLUTs. 6AzGal displays glucose-like physicochemical properties and reproduces in vivo dynamics similar to 18F-FDG. Combining this method with multi-parametric immunophenotyping, we demonstrate the ability to precisely resolve metabolically-activated cells with various GLUT activities in ex vivo and in vivo models. Overall, this method provides opportunities to dissect the heterogenous metabolic landscape in complex tissue environments.


Subject(s)
Azides , Glucose , Azides/chemistry , Glucose/metabolism , Single-Cell Analysis
16.
Int J Biol Macromol ; 264(Pt 1): 130567, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453120

ABSTRACT

Alginate, a polyuronic biopolymer composed of mannuronic and guluronic acid units, contain hydroxyl and carboxyl groups as targeting modification sites to obtain structures with new and/or improved biological properties. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a versatile click reaction for polymer functionalization, but it typically requires a "pre-click" modification to introduce azide or alkyne groups. Here, we described a straightforward chemical path to selectively modify alginate carboxyl groups producing versatile azido derivatives through N-acylation using 3-azydopropylamine. The resulting azide-functionalized polysaccharides underwent click chemistry to yield amino derivatives, confirmed by NMR and FTIR analyses. The 1H NMR spectrum reveals a characteristic triazole group signal at 8.15 ppm. The absence of the azide FTIR band for all amino derivatives, previously observed for the N-acylation products, indicated reaction success. Antibacterial and antioxidant assessments revealed that the initial polysaccharide lacks E. coli inhibition, while the click chemistry-derived amine products exhibit growth inhibition at 5.0 mg/mL. Lower molecular weight derivatives demonstrate superior DPPH scavenging ability, particularly amino-derivatives (24-33 % at 1.2 mg/mL). This innovative chemical pathway offers a promising strategy for developing polysaccharide structures with enhanced properties, demonstrating potential applications in various fields.


Subject(s)
Alginates , Azides , Azides/chemistry , Escherichia coli , Polymers/chemistry , Click Chemistry , Alkynes/chemistry , Copper/chemistry , Cycloaddition Reaction
17.
Talanta ; 274: 125973, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537359

ABSTRACT

Sensitive detection of copper ion (Cu2+), which is of great importance for environmental pollution and human health, is crucial. In this study, we present a highly sensitive method for measuring Cu2+ in an array of femtoliter wells. In brief, magnetic beads (MBs) modified with alkyne groups were bound to the azide groups of biotin-PEG3-azide (bio-PEG-N3) via Cu+-catalyzed click chemistry. Cu+ in the click chemistry reaction was generated by reducing Cu2+ with sodium ascorbate. Following the ligation, the surface of the MBs was modified with biotin, which could be labeled with streptavidin-ß-galactosidase (SßG). The MBs complex was then suspended in ß-galactosidase substrate fluorescein-di-ß-d-galactopyranoside (FDG), and loaded into the array of femtoliter wells. The MBs sank into the wells due to gravity, and the resulting fluorescent product, generated from the reaction between SßG on the surface of the MBs and FDG, was confined within the wells. The number of fluorescent wells increased with higher Cu2+ concentrations. The bright-field and fluorescent images of the wells were acquired using an inverted fluorescent microscope. The detection limit of this assay for Cu2+ was 1 nM without signal amplification, which was 103 times lower than that of traditional fluorescence detection assays.


Subject(s)
Azides , Click Chemistry , Copper , Copper/chemistry , Copper/analysis , Azides/chemistry , Limit of Detection , Biotin/chemistry , Polyethylene Glycols/chemistry , Streptavidin/chemistry , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/analysis
18.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38554039

ABSTRACT

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Subject(s)
Cycloaddition Reaction , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Copper/chemistry , Catalysis , Azides/chemistry , Alkynes/chemistry , Alkynes/chemical synthesis , Proteins/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Click Chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Carbohydrates/chemistry , Carbohydrates/chemical synthesis
19.
Chemistry ; 30(30): e202400611, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38512657

ABSTRACT

Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.


Subject(s)
Click Chemistry , Copper , Copper/chemistry , Catalysis , Biocompatible Materials/chemistry , Alkynes/chemistry , Ligands , Polymers/chemistry , Humans , Azides/chemistry
20.
J Oleo Sci ; 73(4): 573-581, 2024.
Article in English | MEDLINE | ID: mdl-38556290

ABSTRACT

We present a CuAAC (Copper-Catalyzed Azide-Alkyne Cycloaddition) reaction protocol designed for the visualization of mRNA. To achieve this, we synthesized stable mRNA molecules incorporating the modified nucleoside analog, EU, a crucial element for fluorophore attachment. Leveraging this modified mRNA, we successfully executed the CuAAC reaction, wherein the pro-fluorophore, coumarin, was conjugated to EU on the mRNA through our meticulously designed CuAAC process. This innovative approach resulted in the emission of fluorescence, enabling both precise quantification and visual observation of mRNA. Furthermore, we demonstrated the feasibility of concurrent mRNA synthesis and visualization by seamlessly integrating the CuAAC reaction mix into the mRNA transcription process. Additionally, our novel methodology opens avenues for prospective real-time monitoring of mRNA transcription within artificial cells. These advancements hold significant promise for expanding our comprehension of fundamental cellular processes and finding applications across diverse biological contexts in the future.


Subject(s)
Azides , Click Chemistry , Click Chemistry/methods , Prospective Studies , Azides/chemistry , Copper/chemistry , Cycloaddition Reaction , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...