Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710793

ABSTRACT

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Subject(s)
Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
2.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697595

ABSTRACT

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Bivalvia , Pinus , Plant Bark , Quercus , Animals , Adsorption , Quercus/chemistry , Plant Bark/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Azithromycin/chemistry , Azithromycin/analysis , Pinus/chemistry , Bivalvia/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Animal Shells/chemistry
3.
Bioorg Chem ; 147: 107338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583253

ABSTRACT

Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Fluorometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Binding Sites , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Structure-Activity Relationship , Ribosomes/metabolism , Ribosomes/drug effects , Dose-Response Relationship, Drug , Animals , Cattle , Azithromycin/pharmacology , Azithromycin/chemistry , Azithromycin/metabolism
4.
Biomater Adv ; 153: 213540, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429048

ABSTRACT

Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 µm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 µg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Humans , Azithromycin/pharmacology , Azithromycin/chemistry , Azithromycin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems/methods , Lung/metabolism
5.
J Pharm Sci ; 112(12): 3164-3174, 2023 12.
Article in English | MEDLINE | ID: mdl-37506767

ABSTRACT

The encapsulation efficiency and the loading capacity of azithromycin (AZI) were succesfully enhanced by modifying chitosan nanoparticle (NCh) with Anredera cordifolia leaf extract (ACLE), as demonstrated in this study. The prominent secondary metabolites in ACLE could establish a new chemical bonds with NCh's amino groups and partly improved the hydrophobicity of NCh, which leads to excellent AZI encapsulation efficiency and loading capacity of 95.24 ± 1.30% and 55.74 ± 1.03%, respectively. TEM characterization demonstrated that the AZI-loaded ACLE-NCh nanoparticles were uniformly distributed with a particle size of 24.6 ± 2.9 nm. According to the result of in vitro drug release studies, AZI-loaded ACLE-NCh releases 1.12 ± 0.33% at a pH of 1.6 for 2 h, 82.05 ± 2.26% at a pH of 6.8 for 6 h, and 93.44 ± 1.94% at a pH of 7.4 for 24 h. It is remarkable that the encapsulation activityu of AZI-loaded ACLE-NCh is more effective due to the better interaction between NCh and AZI resulting from the increased hydrophobicity of modified NCh. Moreover, this work provides novel findings on the significant contribution of NCh modified by plant extracts, which has the potential as a carrier for azithromycin.


Subject(s)
Chitosan , Nanoparticles , Azithromycin/chemistry , Chitosan/chemistry , Drug Liberation , Particle Size , Nanoparticles/chemistry , Plant Extracts , Drug Carriers/chemistry
6.
Chemosphere ; 329: 138635, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37068612

ABSTRACT

Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 µM to 1.0 mM with a 0.94 µM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.


Subject(s)
Azithromycin , Microalgae , Models, Chemical , Water Pollutants, Chemical , Adsorption , Azithromycin/chemistry , Charcoal/chemistry , Colorimetry , Hydrogen-Ion Concentration , Kinetics , Pharmaceutical Preparations , Porosity , Thermodynamics , Water Pollutants, Chemical/chemistry
7.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015941

ABSTRACT

An electrochemical cell containing two graphite rods was filled with the appropriate electrolyte (0.2 M ammonia + 0.2 M ammonium sulphate) and connected to the exfoliation system to synthesize graphene (EGr). A bias of 7 V was applied between the anode and cathode for 3 h. After synthesis, the morphology and structure of the sample was characterized by SEM, XRD, and FTIR techniques. The material was deposited onto the surface of a glassy carbon (GC) electrode (EGr/GC) and employed for the electrochemical detection of azithromycin (AZT). The DPV signals recorded in pH 5 acetate containing 6 × 10-5 M AZT revealed significant differences between the GC and EGr/GC electrodes. For EGr/GC, the oxidation peak was higher and appeared at lower potential (+1.12 V) compared with that of bare GC (+1.35 V). The linear range for AZT obtained with the EGr/GC electrode was very wide, 10-8-10-5 M, the sensitivity was 0.68 A/M, and the detection limit was 3.03 × 10-9 M. It is important to mention that the sensitivity of EGr/GC was three times higher than that of bare GC (0.23 A/M), proving the advantages of using graphene-modified electrodes in the electrochemical detection of AZT.


Subject(s)
Graphite , Azithromycin/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes , Graphite/chemistry , Limit of Detection
8.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 371-386, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35818230

ABSTRACT

Due to the emergency and uncontrolled situation caused by the COVID-19 pandemic that arising in the entire world, it is necessary to choose available drugs that can inhibit or prevent the disease. Therefore, the repurposing of the commercial antibiotic, dirithromycin has been screened for the first time against fifteen receptors and compared to the azithromycin using a molecular docking approach to identify possible SARS-CoV-2 inhibitors. Our docking results showed that dirithromycin fit significantly in the Furin catalytic pocket having the lowest binding score (-9.9 Kcal/mol) with respect to azithromycin (-9.4 Kcal/mol) and can interact and block both Asp154 and Ser368 residues by Van der Walls interaction as well as bound to His194 and Ser368 residues via hydrogen bonds. Good results were also obtained with the Tmprss-2 receptor. A Molecular Dynamic simulation was assessed to confirm this interaction. Additionally, detailed receptor-ligand interactions with SARS-CoV-2 and pro-inflammatory mediators were investigated suggesting more target information with interesting results. The findings of this study are very efficient and provide a basis for the development of dirithromycin for clinical trial applications to be efficient in treating SARS-CoV-2 infections.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Azithromycin/chemistry , Azithromycin/pharmacology , Azithromycin/therapeutic use , Erythromycin/analogs & derivatives , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
9.
J Biomol Struct Dyn ; 40(19): 9429-9442, 2022.
Article in English | MEDLINE | ID: mdl-34033727

ABSTRACT

Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Hydroxychloroquine , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/chemistry , Zinc Sulfate , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Azithromycin/chemistry , Molecular Docking Simulation
10.
Bioorg Chem ; 119: 105553, 2022 02.
Article in English | MEDLINE | ID: mdl-34920338

ABSTRACT

Dimethylamino-2H-5-dihydropyrane-6-methyl-4-one (DADHP) is a novel antibacterial pyrones derivatives and potential pharmaceutical that was quantitatively synthesized by oxidizing azithromycin (AZ) antibiotic with potassium permanganate in an alkaline medium (pH > 12). The oxidation reaction was kinetically studied using spectrophotometric technique at ionic strength equal to 0.02 mol dm-3. The redox reaction was discovered to have two separate stages that could be measured. The first stage was relatively fast and corresponding to the formation of coordination intermediate complexes involving blue hypomanganate (V) and/or green manganate (VI) transient species. Variable parameters like as the concentration of permanganate ion and AZ substrate, as well as pH and ionic strength, have been studied to see how they affect oxidation rates. The experimental results showed a first-order dependency in [MnO4-] and fractional first-order kinetics in each of [AZ] and alkali concentration under pseudo-first-order reaction conditions of [AZ] ≫ 10 [MnO4-]. The oxidation process was base-catalyzed, and the oxidation rates increased as the alkali concentration increased. The product was confirmed by Fourier Transform Infrared spectroscopy (FTIR), elemental analysis, condensation tests with 2,4-dinitrophenyl haydrazine and hydroxyl amine, and GC-Mass. The oxidation product obtained can be employed as interesting class of organic compounds with diverse chemical and pharmacological applications.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Azithromycin/chemistry , Potassium Permanganate/chemistry , Pyrones/chemical synthesis , Anti-Bacterial Agents/chemistry , Kinetics , Mass Spectrometry , Molecular Structure , Oxidation-Reduction , Pyrones/chemistry
11.
Pak J Pharm Sci ; 34(3(Supplementary)): 1149-1156, 2021 May.
Article in English | MEDLINE | ID: mdl-34602445

ABSTRACT

As part of our continuous research to understand the interaction mechanism of drug and metallo-elements, heavy metal complexes of azithromycin (AZI) were synthesized with arsenic oxide, lead carbonate and silver chloride salts in molar ratio of 2: 1 (L: M). Synthesized heavy metal complexes have shown good percent yield and characterized through spectroscopic parameters including UV-Visible, TLC, FT-IR, NMR and elemental analysis (CHN). Spectroscopic characterization reveals the binding of ligand AZI with heavy metals in bi-dentate manner involving the hydroxide and 9a-NCH3 group of the aglycone ring of AZI. These newly synthesized heavy metal complexes were evaluated for their antimicrobial response against selected gram positive and gram negative organisms and antifungal species. It was noted that all newly synthesized complexes exhibits increased activity against B.subtilus whereas, AZI itself didn't show any activity, while synthesized complexes have low to moderate response against all the studied organisms. Complex A-M12 possess greater enzymatic response against both urease and alpha chymotrypsin among all the studied complexes. Results obtained were then statistically analyzed through one way ANOVA and Dunnett's test by using SPSS version 20.0 suggesting the significant response of complexes against selected organisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Arsenic Trioxide/pharmacology , Azithromycin/pharmacology , Carbonates/pharmacology , Coordination Complexes/pharmacology , Lead/pharmacology , Silver Compounds/pharmacology , Arsenic Trioxide/chemistry , Azithromycin/analogs & derivatives , Azithromycin/chemistry , Bacillus subtilis/drug effects , Candida albicans/drug effects , Carbonates/chemistry , Chymotrypsin/metabolism , Citrobacter/drug effects , Coordination Complexes/chemistry , Disk Diffusion Antimicrobial Tests , Enzyme Assays , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Lead/chemistry , Micrococcus luteus/drug effects , Proteus mirabilis/drug effects , Pseudomonas aeruginosa/drug effects , Salmonella typhi/drug effects , Shigella flexneri/drug effects , Silver Compounds/chemistry , Staphylococcus aureus/drug effects , Streptococcus/drug effects , Urease/metabolism
12.
Biochemistry ; 60(41): 3098-3113, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34609833

ABSTRACT

The MtrCDE system confers multidrug resistance to Neisseria gonorrhoeae, the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD. Using known conformations of MtrD homologues, we simulated a potential dynamic transport cycle of MtrD using targeted MD techniques (TMD), and we noted that forces were not applied to ligands of interest. In these TMD simulations, we observed the transport of azithromycin and the rejection of streptomycin. In an unbiased, long-time scale simulation of AZY-bound MtrD, we observed the spontaneous diffusion of azithromycin through the periplasmic cleft. Our simulations show how the peristaltic motions of the periplasmic cleft facilitate the transport of substrates by MtrD. Our data also suggest that multiple transport pathways for macrolides may exist within the periplasmic cleft of MtrD.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Neisseria gonorrhoeae/chemistry , Azithromycin/chemistry , Azithromycin/metabolism , Bacterial Proteins/chemistry , Binding Sites , Biological Transport , Hydrogen Bonding , Ligands , Membrane Proteins/chemistry , Membrane Transport Proteins/chemistry , Molecular Dynamics Simulation , Protein Binding , Streptomycin/chemistry , Streptomycin/metabolism
13.
Eur Rev Med Pharmacol Sci ; 25(10): 3923-3932, 2021 May.
Article in English | MEDLINE | ID: mdl-34109607

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) has potentially conflicting roles in health and disease. COVID-19 coronavirus binds to human cells via ACE2 receptor, which is expressed on almost all body organs. Boosting the ACE2 receptor levels on heart and lung cells may provide more cellular enter to virus thereby worsening the infection. Therefore, among the drug targets, ACE2 is suggested as a vital target of COVID-19 therapy. This hypothesis is based on the protective role of the drugs acting on ACE2. Therefore, this review discusses the impact and challenges of using ACE2 as a target in the current therapy of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Azithromycin/chemistry , Azithromycin/metabolism , Azithromycin/therapeutic use , COVID-19/virology , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/metabolism , Hydroxychloroquine/therapeutic use , SARS-CoV-2/isolation & purification , Vitamin D/chemistry , Vitamin D/metabolism , Vitamin D/therapeutic use , COVID-19 Drug Treatment
14.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068694

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease characterized by the proliferation of myofibroblasts and deposition of extracellular matrix that results in irreversible distortion of the lung structure and the formation of focal fibrosis. The molecular mechanism of IPF is not fully understood, and there is no satisfactory treatment. However, most studies suggest that abnormal activation of transforming growth factor-ß1 (TGF-ß1) can promote fibroblast activation and epithelial to mesenchymal transition (EMT) to induce pulmonary fibrosis. Deglycosylated azithromycin (Deg-AZM) is a compound we previously obtained by removing glycosyls from azithromycin; it was demonstrated to exert little or no antibacterial effects. Here, we discovered a new function of Deg-AZM in pulmonary fibrosis. In vivo experiments showed that Deg-AZM could significantly reduce bleomycin-induced pulmonary fibrosis and restore respiratory function. Further study revealed the anti-inflammatory and antioxidant effects of Deg-AZM in vivo. In vitro experiments showed that Deg-AZM inhibited TGF-ß1 signaling, weakened the activation and differentiation of lung fibroblasts, and inhibited TGF-ß1-induced EMT in alveolar epithelial cells. In conclusion, our findings show that Deg-AZM exerts antifibrotic effects by inhibiting TGF-ß1-induced myofibroblast activation and EMT.


Subject(s)
Azithromycin/therapeutic use , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Signal Transduction , Animals , Azithromycin/chemistry , Azithromycin/pharmacology , Bleomycin , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Glycosylation/drug effects , Inflammation/pathology , Lung/pathology , Mice , Models, Biological , Myofibroblasts/drug effects , Myofibroblasts/pathology , NIH 3T3 Cells , Oxidative Stress/drug effects , Phenotype , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
15.
Chem Commun (Camb) ; 57(33): 4031-4034, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885696

ABSTRACT

We report the IR and VCD spectra of azithromycin, a macrolide antibiotic with a total of 18 stereogenic centers. The computational analysis of the spectra reveals that a single water molecule has to be considered in the conformational search. Its key role is the stabilization of an extended hydrogen bonding network and an otherwise unstable conformation that determines the VCD spectral signatures.


Subject(s)
Azithromycin/chemistry , Circular Dichroism/methods , Computer Simulation , Density Functional Theory , Hydrogen Bonding , Molecular Conformation , Spectrophotometry, Infrared , Water
16.
J Nanosci Nanotechnol ; 21(4): 2075-2089, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500022

ABSTRACT

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values -8.727 kcal/mol for Main Protease and -9.784 kcal/mol for protease 3CL, Heparin with values of -7.647 kcal/mol for the Main protease and -7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


Subject(s)
Azithromycin/chemistry , COVID-19/enzymology , Coronavirus 3C Proteases/chemistry , Heparin/chemistry , Ivermectin/chemistry , Lopinavir/chemistry , Oseltamivir/chemistry , Ritonavir/chemistry , SARS-CoV-2/enzymology , Humans , Molecular Docking Simulation
17.
Braz J Microbiol ; 52(2): 597-606, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33483896

ABSTRACT

BACKGROUND AND AIM: Extensively drug-resistant (XDR) Klebsiella pneumoniae represent a major threat in intensive care units. The aim of the current study was to formulate a niosomal form of azithromycin (AZM) and to evaluate its in vitro effect on XDR K. pneumoniae as a single agent or in combination with levofloxacin. MATERIAL AND METHODS: Forty XDR K. pneumoniae isolates (23 colistin-sensitive and 17 colistin-resistant) were included in the study. Formulation and characterization of AZM niosomes were performed. The in vitro effect of AZM solution/niosomes alone and in combination (with levofloxacin) was investigated using the checkerboard assay, confirmed with time-kill assay and post-antibiotic effect (PAE). RESULTS: The AZM niosome mean minimal inhibitory concentration (MIC) (187.4 ± 209.1 µg/mL) was significantly lower than that of the AZM solution (342.5 ± 343.4 µg/mL). AZM niosomes/levofloxacin revealed a 40% synergistic effect compared to 20% with AZM solution/levofloxacin. No antagonistic effect was detected. The mean MIC values of both AZM niosomes and AZM solution were lower in the colistin-resistant group than in the colistin-sensitive group. The mean PAE time of AZM niosomes (2.3 ± 1.09 h) was statistically significantly longer than that of the AZM solution (1.37 ± 0.5 h) (p = 0.023). CONCLUSION: AZM niosomes were proved to be more effective than AZM solution against XDR K. pneumoniae, even colistin-resistant isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Klebsiella pneumoniae/drug effects , Levofloxacin/pharmacology , Anti-Bacterial Agents/chemistry , Azithromycin/chemistry , Drug Compounding , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae/growth & development , Liposomes/chemistry , Liposomes/pharmacology , Microbial Sensitivity Tests
18.
J Mol Graph Model ; 104: 107834, 2021 05.
Article in English | MEDLINE | ID: mdl-33516966

ABSTRACT

Since 2020, the world is facing the first global pandemic of 21st century. Among all the solutions proposed to treat this new strain of coronavirus, named SARS-CoV-2, the vaccine seems a promising way but the delays are too long to be implemented quickly. In the emergency, a dual therapy has shown its effectiveness but has also provoked a set of debates around the dangerousness of a particular molecule, hydroxychloroquine. In particular, the doses to be delivered, according to the studies, were well beyond the acceptable doses to support the treatment without side effects. We propose here to use all the advantages of nanovectorization to address this question of concentration. Using quantum and classical simulations we will show in particular that drug transport on boron nitrogen oxide nanosheets increases the effectiveness of the action of these drugs. This will definitely allow to decrease the drug quantity needing to face the disease.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Azithromycin/chemistry , Hydroxychloroquine/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Azithromycin/pharmacology , Binding Sites , Boron Compounds/chemistry , COVID-19/virology , Drug Delivery Systems/methods , Drug Dosage Calculations , Humans , Hydroxychloroquine/pharmacology , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Nanomedicine/methods , Nanostructures/chemistry , Nitrogen Oxides/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quantum Theory , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , COVID-19 Drug Treatment
19.
Biochem Biophys Res Commun ; 538: 132-136, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33097184

ABSTRACT

Covid-19 is an infectious respiratory disease due to a coronavirus named SARS-CoV-2. A critical step of the infection cycle is the binding of the virus spike S protein to the cellular ACE-2 receptor. This interaction involves a receptor binding domain (RBD) located at the center of the S trimer, whereas the lateral N-terminal domain (NTD) displays a flat ganglioside binding site that enables the virus to bind to lipid rafts of the plasma membrane, where the ACE-2 receptor resides. S protein binding to lipid rafts can be blocked by hydroxychloroquine, which binds to gangliosides, and by azithromycin, which binds to the NTD. Based on these data, we identified the NTD of SARS-CoV-2 as a promising target for both therapeutic and vaccine strategies, a notion later supported by the discovery, in convalescent Covid-19 patients, of a neutralizing antibody (4A8) that selectively binds to the NTD. The 4A8 epitope overlaps the ganglioside binding domain, denying any access of the virus to lipid rafts when the antibody is bound to the S protein. Thus, our data explain why antibody binding to the tip of the NTD results in SARS-CoV-2 neutralization. The high level of conservation of the ganglioside binding domain of SARS-CoV-2 (100% identity in 584 of 600 isolates analyzed worldwide) offers unique opportunities for innovative vaccine/therapeutic strategies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/chemistry , COVID-19/therapy , Gangliosides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Azithromycin/chemistry , Azithromycin/pharmacology , Azithromycin/therapeutic use , Binding Sites , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Gangliosides/chemistry , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Protein Domains , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
20.
PLoS Comput Biol ; 16(12): e1008489, 2020 12.
Article in English | MEDLINE | ID: mdl-33382685

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus poses serious threats to the global public health and leads to worldwide crisis. No effective drug or vaccine is readily available. The viral RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target. A hybrid drug screening procedure was proposed and applied to identify potential drug candidates targeting RdRp from 1906 approved drugs. Among the four selected market available drug candidates, Pralatrexate and Azithromycin were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 0.008µM and 9.453 µM, respectively. For the first time, our study discovered that Pralatrexate is able to potently inhibit SARS-CoV-2 replication with a stronger inhibitory activity than Remdesivir within the same experimental conditions. The paper demonstrates the feasibility of fast and accurate anti-viral drug screening for inhibitors of SARS-CoV-2 and provides potential therapeutic agents against COVID-19.


Subject(s)
Aminopterin/analogs & derivatives , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Drug Repositioning , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/physiology , Aminopterin/chemistry , Aminopterin/pharmacology , Animals , Azithromycin/chemistry , Azithromycin/pharmacology , Chlorocebus aethiops , Computer Simulation , Deep Learning , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/chemistry , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...