Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 878
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732115

ABSTRACT

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Subject(s)
Antiviral Agents , Machine Learning , Molecular Dynamics Simulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Thermodynamics , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Azoles/chemistry , Azoles/pharmacology
2.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
3.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568307

ABSTRACT

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Subject(s)
Ferrosoferric Oxide , Pesticides , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Azoles/chemistry
4.
Future Med Chem ; 16(2): 157-171, 2024 01.
Article in English | MEDLINE | ID: mdl-38205647

ABSTRACT

Background: Azole and sulfonamide molecular frameworks are endowed with potent antimicrobial activity. Materials & methods: A series of azole-sulfonamide conjugates were synthesized using click reaction of N-propargylated imidazole with azide of sulfonamide and its antimicrobial efficacy was evaluated. Results: The compounds 7c, 7i and 7r displayed promising antibacterial activities, better than the standards sulfonamide and norfloxacin. All molecules exhibited promising antifungal activity, more potent than fluconazole. Docking studies of the active conjugates signified the importance of hydrophobic interactions in hosting the molecules in the active site of dihydrofolate reductase. Conclusion: Azole-sulfonamide conjugates are more active than single sulfonamide moieties and 7c, 7i and 7r may prove valuable leads for further optimization as novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Azoles , Azoles/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Fluconazole , Sulfanilamide , Sulfonamides/pharmacology , Sulfonamides/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Molecular Structure , Microbial Sensitivity Tests
5.
Biochimie ; 220: 167-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38158037

ABSTRACT

Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.


Subject(s)
Antifungal Agents , Azoles , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , Membrane Transport Proteins , Azoles/pharmacology , Azoles/chemistry , Azoles/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida albicans/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry
6.
Future Med Chem ; 15(16): 1527-1548, 2023 08.
Article in English | MEDLINE | ID: mdl-37610862

ABSTRACT

Chemotherapy is a critical treatment modality for cancer patients, but multidrug resistance remains one of the major challenges in cancer therapy, creating an urgent need for the development of novel potent chemical entities. Azoles, particularly pyrazole, could interact with different biological targets and exhibit diverse biological properties including anticancer activity. Many clinically used anticancer agents own an azole moiety, demonstrating that azoles are privileged and pivotal templates in the discovery of novel anticancer chemotherapeutics. The present article is an attempt to highlight the recent advances in pyrazole-azole hybrids with anticancer potential and discuss the structure-activity relationships, covering articles published from 2018 to present, to facilitate the rational design of more effective anticancer candidates.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Azoles/chemistry , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
7.
Chem Biol Drug Des ; 102(3): 606-639, 2023 09.
Article in English | MEDLINE | ID: mdl-37220949

ABSTRACT

Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.


Subject(s)
Antifungal Agents , Lanosterol , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sterol 14-Demethylase/chemistry , Azoles/pharmacology , Azoles/chemistry , Drug Development
8.
J Med Chem ; 66(11): 7497-7515, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37218609

ABSTRACT

Triazoles have demonstrated significant efficacy in the treatment of fungal infections. However, increasing drug resistance is a growing concern that negatively impacts their effectiveness. By designing a well-crafted side chain, triazoles can be endowed with advantages, like higher potency and the ability to overcome drug resistance. This highlights the diverse interactions between side chains and CYP51. To explore novel triazole antifungal agents, we synthesized three series of fluconazole-core compounds and focused on optimizing the chain based on molecule docking and in vitro results. The most potent S-F24 exhibited excellent broad-spectrum antifungal activity that was better or comparable to clinically used azoles. S-F24 maintained its potency even against multi-resistant Candida albicans. Additionally, S-F24 displayed a good safety profile with high selectivity, low hemolytic effects, and low tendency to induce resistance. Our findings collectively demonstrated that there was still a high potential for side-chain modification in the development of novel azoles.


Subject(s)
Antifungal Agents , Triazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Microbial Sensitivity Tests , Fluconazole/pharmacology , Azoles/pharmacology , Azoles/chemistry , Candida albicans
9.
Eur J Med Chem ; 256: 115436, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37146343

ABSTRACT

This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.


Subject(s)
Antifungal Agents , Cryptococcus gattii , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/chemistry , Miconazole/pharmacology , Candida , Fluconazole , Eugenol/pharmacology , Eugenol/chemistry , Microbial Sensitivity Tests , Candida albicans , Imidazoles/pharmacology , Ergosterol
10.
Chem Biodivers ; 20(5): e202300096, 2023 May.
Article in English | MEDLINE | ID: mdl-37042439

ABSTRACT

Working principle of azoles as antifungals is the inhibition of fungal CYP51/lanosterol-14α-demethylase via selective coordination with heme iron. This interaction can also cause side effects by binding to host lanosterol-14α-demethylase. Hence, it is necessary to design, synthesize and test new antifungal agents that have different structures than those of azoles and other antifungal drugs of choice in clinical practice. Consequently, a series of steroidal 1,4-dihydropyridine analogs 16-21 were synthesized and screened for their in vitro anti-fungal activity against three Candida species as steroids-based medications have low toxicity, less vulnerability to multi-drug resistance, and high bioavailability by being capable of penetrating the cell wall and binding to specific receptors. Initially, Claisen-Schmidt condensation takes place between steroidal ketone (dehydroepiandrosterone) and an aromatic aldehyde forming steroidal benzylidene 8-13 followed by Hantzsch 1,4-dihydropyridine synthesis resulting in steroidal 1,4-dihydropyridine derivatives 16-21. The results exhibited that compound 17 has significant anti-fungal potential with an MIC value of 750 µg/ml for C. albicans and C. glabrata and 800 µg/ml for C. tropicalis. In silico molecular docking and ADMET studies were also performed for compounds 16-21.


Subject(s)
Antifungal Agents , Lanosterol , Molecular Docking Simulation , Lanosterol/pharmacology , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/chemistry , Azoles/pharmacology , Candida albicans
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122582, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36905738

ABSTRACT

Hydrogen sulfide (H2S) is a central signaling and antioxidant biomolecule involved in various biological processes. As inappropriate levels of H2S in the human body are closely related to various diseases, including cancer, a tool capable of detecting H2S with high selectivity and sensitivity in living systems is urgently required. In this work, we intended to develop a biocompatible and activatable fluorescent molecular probe for detecting H2S generation in living cells. The 7-nitro-2,1,3-benzoxadiazole-imbedded naphthalimide (1) probe presented here responds specifically to H2S and produces readily detectable fluorescence at 530 nm. Interestingly, probe 1 exhibited significant fluorescence responses to changes in endogenous H2S levels as well as high biocompatibility and permeability in living HeLa cells. This allowed for the real-time monitoring of endogenous H2S generation as an antioxidant defense response in the oxidatively stressed cells.


Subject(s)
Hydrogen Sulfide , Naphthalimides , Humans , Antioxidants/pharmacology , Fluorescent Dyes , HeLa Cells , Naphthalimides/pharmacology , Signal Transduction , Azoles/chemistry
12.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675123

ABSTRACT

Ebselen is a low-molecular-weight organoselenium compound that has been broadly studied for its antioxidant, anti-inflammatory, and cytoprotective properties. These advantageous properties were initially associated with mimicking the activity of selenoprotein glutathione peroxidase, but the biomedical impact of this compound appear to be far more complex. Ebselen serves as a substrate or inhibitor with multiple protein/enzyme targets, whereas inhibition typically originates from the covalent modification of cysteine residues by opening the benzisoselenazolone ring and S-Se bond formation. The inhibition of enzymes of various classes and origins has been associated with substantial antimicrobial potential among other activities. In this contribution, we summarize the current state of the art regarding the antibacterial activity of ebselen. This activity, alone and in combination with commercial pharmaceuticals, against pathogens, including those resistant to drugs, is presented, together with the molecular mechanism behind the reactivity. The specific inactivation of thioredoxin reductase, bacterial toxins, and other resistance factors is considered to have certain therapeutic implications. Synergistic action and sensitization to common antibiotics assisted with the use of ebselen appear to be promising directions in the treatment of persistent infections.


Subject(s)
Anti-Bacterial Agents , Organoselenium Compounds , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Isoindoles , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Azoles/pharmacology , Azoles/chemistry
13.
Curr Med Chem ; 30(2): 220-249, 2023.
Article in English | MEDLINE | ID: mdl-35392780

ABSTRACT

BACKGROUND: Azoles are the famous and widespread scaffold in the pharmaceutical industry due to their wide range of activities, high efficacy, good tolerability, and oral availability. Furthermore, azole derivatives have attracted attention as potent antimicrobial agents. INTRODUCTION: The purpose of this review is to provide an overview of pharmacological aspects of the main scaffolds of azoles, including imidazole, benzimidazole, triazole, and tetrazole, which possess antimicrobial activity, reported from 2016 to 2020, as well as all of our publication in this field. In addition, we discuss the relationship between structure and activity and molecular docking studies of the azole derivatives to provide critical features and valuable information for the synthesis of novel azole compounds with desirable biological activities. The presented structures in this review have been tested against several bacteria and fungi, such as E. coli and C. albicans, which have been common in all of these studies. RESULTS: A comparison of the reported MIC for tested compounds showed fluconazole base structures as the most active antifungal agents, and triazole derivatives bearing nitrophenyl and coumarin moieties to have the most dominant antibacterial activity. CONCLUSION: Triazole and imidazole scaffolds are more important for designing antimicrobial compounds than other azole derivatives, like benzimidazole or tetrazole. All the most active compounds were observed to fulfill the Lipinski rule.


Subject(s)
Antifungal Agents , Azoles , Humans , Antifungal Agents/chemistry , Azoles/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Escherichia coli , Microbial Sensitivity Tests , Imidazoles/pharmacology , Candida albicans , Anti-Bacterial Agents/chemistry , Triazoles/pharmacology , Tetrazoles , Benzimidazoles/pharmacology
14.
J Org Chem ; 87(22): 15703-15712, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36331418

ABSTRACT

Installing a fluoroalkyl group onto the nitrogen atom of azoles represents a potential strategy for lead optimization in medicinal chemistry. Herein, we describe a method for the N-trifluoropropylation of azoles. This process is accomplished using a combination of regioselective N-vinylation and sequential hydrogenation. The two-step sequence is applicable to a diverse set of azoles and tolerates a wide range of functionalities. In addition, we showcase its practicability and utility through the gram-scale synthesis and the late-stage modification of a complex molecule.


Subject(s)
Azoles , Nitrogen , Azoles/chemistry , Hydrogenation , Catalysis
15.
Eur J Med Chem ; 243: 114707, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36057236

ABSTRACT

Herein, we report the design, synthesis and evaluation of a novel series of diselenide and selenide derivatives as potent antifungal agents by exploiting the hydrophobic cleft of CYP51. Among all synthesized compounds, the most potent compound B01 with low cytotoxic and hemolysis effect exhibited excellent activity against C.alb., C.gla., C.par. and C.kru., as well as selected fluconazole-resistant strains. Moreover, compound B01 could reduce the biofilm formation of the FCZ-resistant C.alb. Subsequently, metabolic stability assays using liver microsomes demonstrated that compound B01 showed good profiles of metabolic stability. With superior pharmacological profile, compound B01 was advanced into in vivo bioactivity evaluation. In a murine model of systemic C.alb. infection, compound B01 significantly reduced fungal load of kidneys. Furthermore, compound B01 revealed relatively low acute toxicity and subacute toxicity in mice. In addition, docking study performed into C.alb. CYP51, showed the binding mode between C.alb. CYP51 and compound B01. Collectively, diselenides compound B01 can be further developed for the potential treatment of invasive fungal infections.


Subject(s)
Antifungal Agents , Selenium , Mice , Animals , Antifungal Agents/chemistry , Azoles/chemistry , Selenium/pharmacology , Selenium/metabolism , Candida albicans , Structure-Activity Relationship , Microbial Sensitivity Tests , Fluconazole/pharmacology
16.
J Org Chem ; 87(18): 12424-12433, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36046980

ABSTRACT

An efficient copper-iodine cocatalyzed intermolecular C-H aminocyanation of indoles with a broad substrate scope has been developed for the first time. This method enables highly step-economic access to 2-amino-3-cyanoindoles in moderate to good yields and provides a complementary strategy for the regioselective difunctionalization of carbon═carbon double bonds of interest in organic synthesis and related areas. Mechanistic studies suggest that these transformations are initiated by iodine-mediated C2-H amination with azoles, followed by copper-catalyzed C3-H cyanation with ethyl cyanoformate.


Subject(s)
Indoles , Iodine , Azoles/chemistry , Catalysis , Copper/chemistry , Indoles/chemistry , Iodides , Iodine/chemistry
17.
J Biol Chem ; 298(9): 102344, 2022 09.
Article in English | MEDLINE | ID: mdl-35944583

ABSTRACT

Human cytochrome P450 8B1 (CYP8B1) is involved in conversion of cholesterol to bile acids. It hydroxylates the steroid ring at C12 to ultimately produce the bile acid cholic acid. Studies implicated this enzyme as a good drug target for nonalcoholic fatty liver disease and type 2 diabetes, but there are no selective inhibitors known for this enzyme and no structures to guide inhibitor development. Herein, the human CYP8B1 protein was generated and used to identify and characterize interactions with a series of azole inhibitors, which tend to be poorly selective P450 inhibitors. Structurally related miconazole, econazole, and tioconazole bound with submicromolar dissociation constants and were effective inhibitors of the native reaction. CYP8B was cocrystallized with S-tioconazole to yield the first X-ray structure. This inhibitor bound in the active site with its azole nitrogen coordinating the heme iron, consistent with inhibitor binding and inhibition assay data. Additionally, the CYP8B1 active site was compared with similar P450 enzymes to identify features that may facilitate the design of more selective inhibitors. Selective inhibitors should promote a better understanding of the role of CYP8B1 inhibition in normal physiology and disease states and provide a possible treatment for nonalcoholic fatty liver disease and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Azoles/chemistry , Azoles/pharmacology , Azoles/therapeutic use , Bile Acids and Salts , Cholesterol , Cholic Acids , Cytochrome P-450 Enzyme System/metabolism , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Econazole/metabolism , Heme/metabolism , Humans , Iron , Miconazole , Nitrogen , Non-alcoholic Fatty Liver Disease/drug therapy , Steroid 12-alpha-Hydroxylase/metabolism
18.
Proteins ; 90(11): 1896-1907, 2022 11.
Article in English | MEDLINE | ID: mdl-35567429

ABSTRACT

We report molecular interactions and inhibition of the main protease (MPro ) of SARS-CoV-2, a key enzyme involved in the viral life cycle. By using a thiadiazolidinone (TDZD) derivative as a chemical probe, we explore the conformational dynamics of MPro via docking protocols and molecular dynamics simulations in all-atom detail. We reveal the local and global dynamics of MPro in the presence of this inhibitor and confirm the inhibition of the enzyme with an IC50 value of 1.39 ± 0.22 µM, which is comparable to other known inhibitors of this enzyme.


Subject(s)
Azoles/chemistry , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
19.
Anal Chem ; 94(19): 7092-7099, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35503259

ABSTRACT

Autophagy, a widespread degradation system in eukaryotes, plays an important role in maintaining the homeostasis of the cellular environment and the recycling of substances. Optical probes for the tracking of autophagy can be used as an effective tool not only to visualize the autophagy process but also to study autophagy-targeted drugs. Various molecule probes for autophagy of cancer cells emerge but are very limited for that of fungal cells, resulting in the lack of research on antifungal drugs targeting autophagy. To address this issue, we report an azole NIR fluorescence-based theranostic probe AF-1 with antifungal activity that is sensitive to autophagy-associated pH. The unique design of this probe lies in the introduction of both the pH-sensitive fluorophore with a detection range matching the pH range of the autophagy process and the conserved core structural fragment of azole drugs, providing a strategy to investigate the relationship between antifungal drug action and autophagy. As such, AF-1 exhibited excellent spectral properties and was found to target and induce the autophagy of the fungal cell membrane while maintaining moderate antifungal activity. Of note, using this theranostic probe as both a dye and drug, the autophagy process of fungi was visualized in a ratiometric manner, revealing the role of azole antifungal drugs in promoting autophagy to induce fungal cell apoptosis.


Subject(s)
Antifungal Agents , Azoles , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Autophagy , Azoles/chemistry , Fluorescence , Fluorescent Dyes , Precision Medicine
20.
J Chem Phys ; 156(19): 194303, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35597641

ABSTRACT

Although triazoles and tetrazole are amphoteric and may behave as weak acids, the latter property can be hugely enhanced by beryllium bonds. To explain this phenomenon, the structure and bonding characteristics of the complexes between triazoles and tetrazoles with one and two molecules of BeF2 have been investigated through the use of high-level G4 ab initio calculations. The formation of the complexes between the N basic sites of the azoles and the Be center of the BeF2 molecule and the (BeF2)2 dimer leads to a significant bonding perturbation of both interacting subunits. The main consequence of these electron density rearrangements is the above-mentioned increase in the intrinsic acidity of the azole subunit, evolving from a typical nitrogen base to a very strong nitrogenous acid. This effect is particularly dramatic when the interaction involves the (BeF2)2 dimer, that is, a Lewis acid much stronger than the monomer. Although the azoles investigated have neighboring N-basic sites, their interaction with the (BeF2)2 dimer yields a monodentate complex. However, the deprotonated species becomes extra-stabilized because a second N-Be bond is formed, leading to a new five-membered ring, with the result that the azole-(BeF2)2 complexes investigated become stronger nitrogenous acids than oxyacids such as perchloric acid.


Subject(s)
Azoles , Beryllium , Azoles/chemistry , Beryllium/chemistry , Triazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...