Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 504
Filter
1.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722330

ABSTRACT

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Subject(s)
Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
2.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786055

ABSTRACT

Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.


Subject(s)
Azoospermia , Mast Cells , Testis , Male , Humans , Mast Cells/metabolism , Mast Cells/pathology , Azoospermia/pathology , Azoospermia/metabolism , Testis/metabolism , Testis/pathology , Adult , Carboxypeptidases A/metabolism , Spermatogenesis
3.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786072

ABSTRACT

Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes. AR and CDYL were found to co-localize and interact in Sertoli cells. The AR-CDYL complex bound to the promoter regions of TNP1 and modulated their transcriptional activity. CDYL acts as a co-regulator of AR transactivation, and its expression is decreased in the Sertoli cells of human testes from patients with azoospermia. The androgen receptor-chromodomain Y-like protein axis plays a crucial role in regulating a network of genes essential for spermatogenesis in Sertoli cells. Disruption of this AR-CDYL regulatory axis may contribute to spermatogenic failure. These findings provide insights into novel molecular mechanisms targeting the AR-CDYL signaling pathway, which may have implications for developing new therapeutic strategies for male infertility.


Subject(s)
Receptors, Androgen , Sertoli Cells , Signal Transduction , Spermatogenesis , Male , Sertoli Cells/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Spermatogenesis/genetics , Animals , Humans , Mice , Mice, Knockout , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Mice, Inbred C57BL , Transcription Factors , Homeodomain Proteins
4.
J Assist Reprod Genet ; 41(5): 1307-1317, 2024 May.
Article in English | MEDLINE | ID: mdl-38430325

ABSTRACT

PURPOSE: To identify the genetic cause of a cryptorchidism patient carrying a non-canonical splicing variant highlighted by SPCards platform in RXFP2 and to provide a comprehensive overview of RXFP2 variants with cryptorchidism correlation. METHODS: We identified a homozygous non-canonical splicing variant by whole-exome sequencing and Sanger sequencing in a case with cryptorchidism and non-obstructive azoospermia (NOA). As the pathogenicity of this non-canonical splicing variant remained unclear, we initially utilized the SPCards platform to predict its pathogenicity. Subsequently, we employed a minigene splicing assay to further evaluate the influence of the identified splicing variant. Microdissection testicular sperm extraction (micro-TESE) combined with intracytoplasmic sperm injection (ICSI) was performed. PubMed and Human Genome Variant Database (HGMD) were queried to search for RXFP2 variants. RESULTS: We identified a homozygous non-canonical splicing variant (NM_130806: c.1376-12A > G) in RXFP2, and confirmed this variant caused aberrant splicing of exons 15 and 16 of the RXFP2 gene: 11 bases were added in front of exon 16, leading to an abnormal transcript initiation and a frameshift. Fortunately, the patient successfully obtained his biological offspring through micro-TESE combined with ICSI. Four cryptorchidism-associated variants in RXFP2 from 90 patients with cryptorchidism were identified through a literature search in PubMed and HGMD, with different inheritance patterns. CONCLUSION: This is the first cryptorchidism case carrying a novel causative non-canonical splicing RXFP2 variant. The combined approach of micro-TESE and ICSI contributed to an optimal pregnancy outcome. Our literature review demonstrated that RXFP2 variants caused cryptorchidism in a recessive inheritance pattern, rather than a dominant pattern.


Subject(s)
Cryptorchidism , Pregnancy Outcome , Receptors, G-Protein-Coupled , Sperm Injections, Intracytoplasmic , Humans , Cryptorchidism/genetics , Cryptorchidism/pathology , Male , Sperm Injections, Intracytoplasmic/methods , Pregnancy , Female , Receptors, G-Protein-Coupled/genetics , Pregnancy Outcome/genetics , Adult , Azoospermia/genetics , Azoospermia/pathology , Sperm Retrieval , Exome Sequencing , RNA Splicing/genetics
5.
J Urol ; 211(5): 678-686, 2024 May.
Article in English | MEDLINE | ID: mdl-38375822

ABSTRACT

PURPOSE: We evaluate microscopic (micro) testicular sperm extraction (TESE) timing relative to oocyte retrieval on intracytoplasmic sperm injection outcome. MATERIALS AND METHODS: Couples with nonobstructive azoospermia who underwent intracytoplasmic sperm injection with freshly retrieved spermatozoa were analyzed based on whether micro-TESE was performed at least 1 day prior to oocyte retrieval (TESE-day-before group) or on the day of oocyte retrieval (TESE-day-of group). Embryology and clinical outcomes were compared. RESULTS: The percentage of patients who underwent a successful testicular sperm retrieval was significantly lower in the TESE-day-before cohort (62%) than in the TESE-day-of cohort (69%; odds ratio [OR] 1.4, 95% CI [1.1, 1.7], P < .001). The fertilization rate was also found to be significantly lower in the TESE-day-before group (45%) than in the TESE-day-of group (53%; OR 1.4, 95% CI [1.2, 1.7], P = .01). Although the association between the cleavage rate and TESE timing was not statistically significant, the implantation rate was found to be significantly higher in the day-before cohort (28%) than in the day-of cohort (22%; OR 0.7, 95% CI [0.6, 0.9], P = .01). Nevertheless, it was found that the clinical pregnancy and delivery rates were not statistically significantly associated with the TESE timing. CONCLUSIONS: Although sperm retrieval and fertilization rates were lower in the TESE-day-before cohort, the 2 cohorts showed comparable embryologic and clinical outcomes. Micro-TESE can be performed before oocyte harvesting to provide physicians ample time to decide between cancelling oocyte retrieval or retrieving oocytes for cryopreservation.


Subject(s)
Azoospermia , Sperm Injections, Intracytoplasmic , Pregnancy , Female , Humans , Male , Oocyte Retrieval , Testis/pathology , Semen , Azoospermia/therapy , Azoospermia/pathology , Spermatozoa/pathology , Sperm Retrieval , Biopsy , Retrospective Studies
6.
J Assist Reprod Genet ; 41(4): 1111-1124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403804

ABSTRACT

PURPOSE: To identify germline mutations related to azoospermia etiology and reproductive potential of surgically retrieved spermatozoa, and to investigate the feasibility of predicting seminiferous tubule function of nonobstructive azoospermic men by transcriptomic profiling of ejaculates. MATERIALS AND METHODS: Sperm specimens were obtained from 30 men (38.4 ± 6 years) undergoing epididymal sperm aspiration for obstructive azoospermia (OA, n = 19) acquired by vasectomy, or testicular biopsy for nonobstructive azoospermia (NOA, n = 11). To evaluate for a correlation with azoospermia etiology, DNAseq was performed on surgically retrieved spermatozoa, and cell-free RNAseq on seminal fluid (n = 23) was performed to predict spermatogenesis in the seminiferous tubule. RESULTS: Overall, surgically retrieved sperm aneuploidy rates were 1.7% and 1.8% among OA and NOA cohorts, respectively. OA men carried housekeeping-related gene mutations, while NOA men displayed mutations on genes involved in crucial spermiogenic functions (AP1S2, AP1G2, APOE). We categorized couples within each cohort according to ICSI clinical outcomes to investigate genetic causes that may affect reproductive potential. All OA-fertile men (n = 9) carried mutations in ZNF749 (sperm production), whereas OA-infertile men (n = 10) harbored mutations in PRB1, which is essential for DNA replication. NOA-fertile men (n = 8) carried mutations in MPIG6B (stem cell lineage differentiation), whereas NOA-infertile individuals (n = 3) harbored mutations in genes involved in spermato/spermio-genesis (ADAM29, SPATA31E1, MAK, POLG, IFT43, ATG9B) and early embryonic development (MBD5, CCAR1, PMEPA1, POLK, REC8, REPIN1, MAPRE3, ARL4C). Transcriptomic assessment of cell-free RNAs in seminal fluid from NOA men allowed the prediction of residual spermatogenic foci. CONCLUSIONS: Sperm genome profiling provides invaluable information on azoospermia etiology and identifies gene-related mechanistic links to reproductive performance. Moreover, RNAseq assessment of seminal fluid from NOA men can help predict sperm retrieval during testicular biopsies.


Subject(s)
Azoospermia , Sperm Retrieval , Spermatogenesis , Spermatozoa , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Adult , Spermatozoa/pathology , Spermatogenesis/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Testis/pathology , Mutation/genetics , Middle Aged , Genetic Profile
7.
F S Sci ; 5(2): 130-140, 2024 May.
Article in English | MEDLINE | ID: mdl-38369016

ABSTRACT

OBJECTIVE: To determine if early spermatocytes can be enriched from a human testis biopsy using fluorescence-activated cell sorting (FACS). DESIGN: Potential surface markers for early spermatocytes were identified using bioinformatics analysis of single-cell RNA-sequenced human testis tissue. Testicular sperm extraction samples from three participants with normal spermatogenesis were digested into single-cell suspensions and cryopreserved. Two to four million cells were obtained from each and sorted by FACS as separate biologic replicates using antibodies for the identified surface markers. A portion from each biopsy remained unsorted to serve as controls. The sorted cells were then characterized for enrichment of early spermatocytes. SETTING: A laboratory study. PATIENTS: Three men with a diagnosis of obstructive azoospermia (age range, 30-40 years). INTERVENTION: None. MAIN OUTCOME MEASURES: Sorted cells were characterized for RNA expression of markers encompassing the stages of spermatogenesis. Sorting markers were validated by their reactivity on human testis formalin-fixed paraffin-embedded tissue. RESULTS: Serine protease 50 (TSP50) and SWI5-dependent homologous recombination repair protein 1 were identified as potential surface proteins specific for early spermatocytes. After FACS sorting, the TSP50-sorted populations accounted for 1.6%-8.9% of total populations and exhibited the greatest average-fold increases in RNA expression for the premeiotic marker stimulated by retinoic acid (STRA8), by 23-fold. Immunohistochemistry showed the staining pattern for TSP50 to be strong in premeiotic undifferentiated embryonic cell transcription factor 1-/doublesex and Mab-3 related transcription factor 1-/STRA8+ spermatogonia as well as SYCP3+/protamine 2- spermatocytes. CONCLUSION: This work shows that TSP50 can be used to enrich early STRA8-expressing spermatocytes from human testicular biopsies, providing a means for targeted single-cell RNA sequencing analysis and in vitro functional interrogation of germ cells during the onset of meiosis. This could enable investigation into details of the regulatory pathways underlying this critical stage of spermatogenesis, previously difficult to enrich from whole tissue samples.


Subject(s)
Flow Cytometry , Spermatocytes , Humans , Male , Spermatocytes/metabolism , Spermatocytes/pathology , Adult , Flow Cytometry/methods , Biopsy/methods , Spermatogenesis/physiology , Testis/pathology , Testis/metabolism , Azoospermia/pathology , Azoospermia/diagnosis , Azoospermia/metabolism , Azoospermia/genetics , Cell Separation/methods , Single-Cell Analysis/methods
8.
Clin Genet ; 106(1): 27-36, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342987

ABSTRACT

Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.


Subject(s)
Exome Sequencing , Infertility, Male , Repressor Proteins , Male , Humans , Repressor Proteins/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Oligospermia/genetics , Oligospermia/pathology , Adult , Pedigree , Azoospermia/genetics , Azoospermia/pathology , Loss of Function Mutation/genetics , Genetic Predisposition to Disease , Protein-Arginine N-Methyltransferases/genetics , Mutation, Missense/genetics , Spermatogenesis/genetics
11.
Hum Reprod ; 39(5): 892-901, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38365879

ABSTRACT

STUDY QUESTION: Are there subgroups among patients with cryptozoospermia pointing to distinct etiologies? SUMMARY ANSWER: We reveal two distinct subgroups of cryptozoospermic (Crypto) patients based on testicular tissue composition, testicular volume, and FSH levels. WHAT IS KNOWN ALREADY: Cryptozoospermic patients present with a sperm concentration below 0.1 million/ml. While the etiology of the severely impaired spermatogenesis remains largely unknown, alterations of the spermatogonial compartment have been reported including a reduction of the reserve stem cells in these patients. STUDY DESIGN, SIZE, DURATION: To assess whether there are distinct subgroups among cryptozoospermic patients, we applied the statistical method of cluster analysis. For this, we retrospectively selected 132 cryptozoospermic patients from a clinical database who underwent a testicular biopsy in the frame of fertility treatment at a university hospital. As controls (Control), we selected 160 patients with obstructive azoospermia and full spermatogenesis. All 292 patients underwent routine evaluation for endocrine, semen, and histological parameters (i.e. the percentage of tubules with elongated spermatids). Moreover, outcome of medically assisted reproduction (MAR) was assessed for cryptozoospermic (n = 73) and Control patients (n = 87), respectively. For in-depth immunohistochemical and histomorphometrical analyses, representative tissue samples from cryptozoospermic (n = 27) and Control patients (n = 12) were selected based on cluster analysis results and histological parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included two parts: firstly using clinical parameters of the entire cohort of 292 patients, we performed principal component analysis (PCA) followed by hierarchical clustering on principal components (i.e. considering hormonal values, ejaculate parameters, and histological information). Secondly, for histological analyses seminiferous tubules were categorized according to the most advanced germ cell type present in sections stained with Periodic acid Schif. On the selected cohort of 39 patients (12 Control, 27 cryptozoospermic), we performed immunohistochemistry for spermatogonial markers melanoma-associated antigen 4 (MAGEA4) and piwi like RNA-mediated gene silencing 4 (PIWIL4) followed by quantitative analyses. Moreover, the morphologically defined Adark spermatogonia, which are considered to be the reserve stem cells, were quantified. MAIN RESULTS AND THE ROLE OF CHANCE: The PCA and hierarchical clustering revealed three different clusters, one of them containing all Control samples. The main factors driving the sorting of patients to the clusters were the percentage of tubules with elongated spermatids (Cluster 1, all Control patients and two cryptozoospermic patients), the percentage of tubules with spermatocytes (Cluster 2, cryptozoospermic patients), and tubules showing a Sertoli cells only phenotype (Cluster 3, cryptozoospermic patients). Importantly, the percentage of tubules containing elongated spermatids was comparable between Clusters 2 and 3. Additional differences were higher FSH levels (P < 0.001) and lower testicular volumes (P < 0.001) in Cluster 3 compared to Cluster 2. In the spermatogonial compartment of both cryptozoospermic Clusters, we found lower numbers of MAGEA4+ and Adark spermatogonia but higher proportions of PIWIL4+ spermatogonia, which were significantly correlated with a lower percentage of tubules containing elongated spermatids. In line with this common alteration, the outcome of MAR was comparable between Controls as well as both cryptozoospermic Clusters. LIMITATIONS, REASONS FOR CAUTION: While we have uncovered the existence of subgroups within the cohort of cryptozoospermic patients, comprehensive genetic analyses remain to be performed to unravel potentially distinct etiologies. WIDER IMPLICATIONS OF THE FINDINGS: The novel insight that cryptozoospermic patients can be divided into two subgroups will facilitate the strategic search for underlying genetic etiologies. Moreover, the shared alterations of the spermatogonial stem cell compartment between the two cryptozoospermic subgroups could represent a general response mechanism to the reduced output of sperm, which may be associated with a progressive phenotype. This study therefore offers novel approaches towards the understanding of the etiology underlying the reduced sperm formation in cryptozoospermic patients. STUDY FUNDING/COMPETING INTEREST(S): German research foundation CRU 326 (grants to: SDP, NN). Moreover, we thank the Faculty of Medicine of the University of Münster for the financial support of Lena Charlotte Schülke through the MedK-program. We acknowledge support from the Open Access Publication Fund of the University of Münster. The authors have no potential conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Follicle Stimulating Hormone , Spermatogenesis , Testis , Humans , Male , Adult , Retrospective Studies , Testis/pathology , Follicle Stimulating Hormone/blood , Azoospermia/pathology , Sperm Count , Spermatozoa/pathology , Cluster Analysis , Oligospermia/pathology , Infertility, Male/pathology , Infertility, Male/etiology
12.
Sci Data ; 11(1): 163, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307907

ABSTRACT

Chemotherapeutic drugs will affect the process of spermatogenesis. However, most current studies on the effects of chemotherapeutic drugs on spermatogenesis are based on mouse models, with a shortage of human body evidence. In addition, the mechanism of chemotherapeutic drugs causing spermatogenesis disorder is not clear. Therefore, we have collected the testicular tissues of an inguinal-lipoma patient whose testes were resected after chemotherapy and a patient who had normal spermatogenesis disorder and underwent single-nucleus RNA sequencing (snRNA-Seq). After quality control, we obtained a total of 27,957 high-quality cells, including 18,612 normal cells and 9,345 drug-treated cells, which were all used in analyzing the mechanism of chemotherapeutic drugs causing spermatogenesis disorder. This study has provided data resources and references for exploring the mechanism of chemotherapeutic drugs causing spermatogenesis disorder with the insight of protecting the spermatogenic abilities of male tumor patients receiving chemotherapy.


Subject(s)
Azoospermia , Testis , Humans , Male , Azoospermia/chemically induced , Azoospermia/pathology , Base Sequence , Cyclophosphamide/adverse effects , Spermatogenesis
13.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38258527

ABSTRACT

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Genes, X-Linked , HEK293 Cells , Infertility, Male/genetics , Oligospermia/genetics , Semen
14.
Andrology ; 12(1): 30-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37172416

ABSTRACT

BACKGROUND: There has been no systematic review and meta-analysis to analyze and summarize the predictive factors of successful sperm extraction in salvage microdissection testicular sperm extraction. OBJECTIVES: We aimed to investigate the factors predicting the result of salvage microdissection testicular sperm extraction in patients with non-obstructive azoospermia who failed the initial microdissection testicular sperm extraction or conventional testicular sperm extraction. MATERIALS AND METHODS: We conducted a systematic literature search in PubMed, Web of Science, EMBASE, and the Cochrane Library for literature that described the characteristics of patients with non-obstructive azoospermia who underwent salvage microdissection testicular sperm extraction after failing the initial microdissection testicular sperm extraction or conventional testicular sperm extraction published prior to June 2022. RESULTS: This meta-analysis included four retrospective studies with 332 patients with non-obstructive azoospermia who underwent a failed initial microdissection testicular sperm extraction and three retrospective studies with 177 non-obstructive azoospermia patients who underwent a failed conventional testicular sperm extraction. The results were as follows: among non-obstructive azoospermia patients whose first surgery was microdissection testicular sperm extraction, younger patients (standard mean difference: -0.28, 95% confidence interval [CI]: -0.55 to -0.01) and those with smaller bilateral testicular volume (standard mean difference: -0.55, 95% CI: -0.95 to -0.15), lower levels of follicle-stimulating hormone (standard mean difference: -0.86, 95% CI: -1.18 to -0.54) and luteinizing hormone (standard mean difference: -0.68, 95% CI: -1.16 to -0.19), and whose testicular histological type was hypospermatogenesis (odds ratio: 3.52, 95% CI: 1.30-9.53) were more likely to retrieve spermatozoa successfully, while patients with Sertoli-cell-only syndrome (odds ratio: 0.41, 95% CI: 0.24-0.73) were more likely to fail again in salvage microdissection testicular sperm extraction. Additionally, in patients who underwent salvage microdissection testicular sperm extraction after a failed initial conventional testicular sperm extraction, those with testicular histological type of hypospermatogenesis (odds ratio: 30.35, 95% CI: 8.27-111.34) were more likely to be successful, while those with maturation arrest (odds ratio: 0.39, 95% CI: 0.18-0.83) rarely benefited. CONCLUSION: We found that age, testicular volume, follicle-stimulating hormone, luteinizing hormone, hypospermatogenesis, Sertoli-cell-only syndrome, and maturation arrest were valuable predictors of salvage microdissection testicular sperm extraction, which will assist andrologists in clinical decision-making and minimize unnecessary injury to patients.


Subject(s)
Azoospermia , Oligospermia , Sertoli Cell-Only Syndrome , Humans , Male , Azoospermia/surgery , Azoospermia/pathology , Oligospermia/pathology , Retrospective Studies , Microdissection/methods , Sperm Retrieval , Semen , Testis/surgery , Testis/pathology , Spermatozoa/pathology , Follicle Stimulating Hormone , Luteinizing Hormone , Follicle Stimulating Hormone, Human
15.
Andrology ; 12(3): 487-504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37674303

ABSTRACT

Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.


Subject(s)
Andrology , Azoospermia , Infertility, Male , Oligospermia , Sertoli Cell-Only Syndrome , Sex Chromosome Aberrations , Sex Chromosome Disorders of Sex Development , Humans , Male , Semen , Infertility, Male/diagnosis , Infertility, Male/genetics , Infertility, Male/pathology , Azoospermia/diagnosis , Azoospermia/genetics , Azoospermia/pathology , Chromosome Deletion , Oligospermia/diagnosis , Oligospermia/genetics , Chromosomes, Human, Y/genetics , Multiplex Polymerase Chain Reaction , Sertoli Cell-Only Syndrome/genetics
16.
Clin Genet ; 105(4): 440-445, 2024 04.
Article in English | MEDLINE | ID: mdl-38148155

ABSTRACT

Nonobstructive azoospermia (NOA), the most severe manifestation of male infertility, lacks a comprehensive understanding of its genetic etiology. Here, a bi-allelic loss-of-function variant in REC114 (c.568C > T: p.Gln190*) were identified through whole exome sequencing (WES) in a Chinese NOA patient. Testicular histopathological analysis and meiotic chromosomal spread analysis were conducted to assess the stage of spermatogenesis arrested. Co-immunoprecipitation (Co-IP) and Western blot (WB) were used to investigate the influence of variant in vitro. In addition, our results revealed that the variant resulted in truncated REC114 protein and impaired interaction with MEI4, which was essential for meiotic DNA double-strand break (DSB) formation. As far as we know, this study presents the first report that identifies REC114 as the causative gene for male infertility. Furthermore, our study demonstrated indispensability of the REC114-MEI4 complex in maintaining DSB homoeostasis, and highlighted that the disruption of the complex due to the REC114 variant may underline the mechanism of NOA.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Loss of Heterozygosity , Infertility, Male/genetics , Infertility, Male/pathology , Testis/pathology , Meiosis/genetics , Cell Cycle Proteins/genetics
17.
Clin Genet ; 105(1): 99-105, 2024 01.
Article in English | MEDLINE | ID: mdl-37715646

ABSTRACT

Non-obstructive azoospermia (NOA) is the most severe form of human male infertility, and the genetic causes of NOA with meiotic arrest remain largely unclear. In this study, we identified novel compound heterozygous MEIOB variants (c.814C > T: p.R272X and c.976G > A: p.A326T) and a previously undescribed homozygous non-canonical splicing variant of MEIOB (c.528 + 3A > C) in two NOA-affected individuals from two irrelevant Chinese families. MEIOB missense variant (p.A326T) significantly reduced protein abundance and nonsense variant (p.R272X) produced a truncated protein. Both of two variants impaired the MEIOB-SPATA22 interaction. The MEIOB non-canonical splicing variant resulted in whole Exon 6 skipping by minigene assay, which was predicted to produce a frameshift truncated protein (p.S111Rfs*32). Histological and immunostaining analysis indicated that both patients exhibited a similar phenotype as we previously reported in Meiob mutant mice, that is, absence of spermatids in seminiferous tubules and meiotic arrest. Our study identified three novel pathogenic variants of MEIOB in NOA patients, extending the mutation spectrum of the MEIOB and highlighting the contribution of meiotic recombination related genes in human fertility.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Mice , Animals , Azoospermia/genetics , Azoospermia/pathology , Infertility, Male/genetics , Mutation/genetics , Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Meiosis/genetics , DNA-Binding Proteins/genetics
18.
Hum Reprod ; 39(2): 303-309, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38140699

ABSTRACT

Fertility restoration using autologous testicular tissue transplantation is relevant for infertile men surviving from childhood cancer and, possibly, in men with absent or incomplete spermatogenesis resulting in the lack of spermatozoa in the ejaculate (non-obstructive azoospermia, NOA). Currently, testicular tissue from pre-pubertal boys extracted before treatment with gonadotoxic cancer therapy can be cryopreserved with good survival of spermatogonial stem cells. However, strategies for fertility restoration, after successful cancer treatment, are still experimental and no clinical methods have yet been developed. Similarly, no clinically available treatments can help men with NOA to become biological fathers after failed attempts of testicular surgical sperm retrieval. We present a case of a 31-year-old man with NOA who had three pieces of testis tissue (each ∼2 × 4 × 2 mm3) extracted and cryopreserved in relation to performing microdissection testicular sperm extraction (mTESE). Approximately 2 years after mTESE, the thawed tissue pieces were engrafted in surgically created pockets bilaterally under the scrotal skin. Follow-up was performed after 2, 4, and 6 months with assessment of reproductive hormones and ultrasound of the scrotum. After 6 months, all engrafted tissue was extracted and microscopically analyzed for the presence of spermatozoa. Furthermore, parts of the extracted tissue were analyzed histologically and by immunohistochemical analysis. Active blood flow in the engrafted tissue was demonstrated by doppler ultrasound after 6 months. No spermatozoa were found in the extracted tissue. Histological and immunohistochemical analysis demonstrated graft survival with intact clear tubules and normal cell organization. Sertoli cells and spermatocytes with normal morphology were located near the basement membrane. MAGE-A and VASA positive spermatogonia/spermatocytes were detected together with SOX9 positive Sertoli cells. Spermatocytes and/or Sertoli cells positive for γH2AX was also detected. In summary, following autologous grafting of frozen-thawed testis tissue under the scrotal skin in a man with NOA, we demonstrated graft survival after 6 months. No mature spermatozoa were detected; however, this is likely due to the pre-existing spermatogenic failure.


Subject(s)
Azoospermia , Testis , Adult , Humans , Male , Child , Testis/pathology , Semen , Spermatozoa/pathology , Spermatogonia , Sertoli Cells , Azoospermia/surgery , Azoospermia/pathology , Sperm Retrieval
19.
J Urol ; 211(1): 163-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873937

ABSTRACT

PURPOSE: We sought to examine sperm retrieval and testicular histology in males of different ages with Klinefelter syndrome. MATERIALS AND METHODS: We identified all males with Klinefelter syndrome who underwent microdissection testicular sperm extraction at our institution from 1995 to 2020. Patients were divided into adolescent (<20 years) and adult (≥20 years) cohorts. Histology and sperm retrieval were compared using chi-square statistics. Multivariable logistic regression models were used to examine factors associated with successful sperm retrieval. RESULTS: We identified 217 males with Klinefelter syndrome, of whom 59 were adolescents and 158 were adults. Adults were stratified into 10-year groupings (20-29 years, n = 62; 30-39 years, n = 88; ≥40 years, n = 8). Approximately 17% of adolescents had testis histology containing germ cells compared with 15% of the 20 to 29-year cohort, 14% of the 30 to 39-year cohort, and 0% over 40 years. In comparison to adolescents (53%), the sperm retrieval rate was significantly higher in the 20 to 29-year cohort (71%, P = .04) and lower in the ≥40-year cohort (13%, P = .03). In multivariable analysis, the presence of hypospermatogenesis on testis biopsy (OR 5.8, P = .03) was associated with higher odds of successful sperm retrieval. CONCLUSIONS: Younger males more frequently had germ cell-containing testis histology, however this finding was not associated with a higher odds of sperm retrieval. Reproductive urologists should counsel azoospermic males with Klinefelter syndrome that sperm retrieval during adolescence for fertility preservation is not required and can be performed in young adulthood.


Subject(s)
Azoospermia , Klinefelter Syndrome , Adult , Adolescent , Humans , Male , Young Adult , Testis/pathology , Klinefelter Syndrome/complications , Klinefelter Syndrome/pathology , Sperm Retrieval , Semen , Azoospermia/pathology , Spermatozoa , Retrospective Studies
20.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37843278

ABSTRACT

Maturation arrest (MA) is a subtype of non-obstructive azoospermia, and male infertility is a known risk factor for testicular tumors. However, the genetic basis for many affected individuals remains unknown. Here, we identified a deleterious hemizygous variant of X-linked retinoblastoma-binding protein 7 (RBBP7) as a potential key cause of MA, which was also found to be associated with the development of Leydig cell tumors. This mutation resulted in premature protein translation termination, affecting the sixth WD40 domain of the RBBP7 and the interaction of the mutated RBBP7 with histone H4. Decreased BRCA1 and increased γH2AX were observed in the proband. In mouse spermatogonial and pachytene spermatocyte-derived cells, deprivation of rbbp7 led to cell cycle arrest and apoptosis. In Drosophila, knockdown of RBBP7/Caf1-55 in germ cells resulted in complete absence of germ cells and reduced testis size, whereas knockdown of RBBP7/Caf1-55 in cyst cells resulted in hyperproliferative testicular cells. Interestingly, male infertility caused by Caf1-55 deficiency was rescued by ectopic expression of wild-type human RBBP7 but not mutant variants, suggesting the importance of RBBP7 in spermatogenesis. Our study provides insights into the mechanisms underlying the co-occurrence of MA and testicular tumors and may pave the way for innovative genetic diagnostics of these 2 diseases.


Subject(s)
Azoospermia , Infertility, Male , Testicular Neoplasms , Animals , Humans , Male , Mice , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Mutation , Retinoblastoma-Binding Protein 7/genetics , Retinoblastoma-Binding Protein 7/metabolism , Spermatogenesis/genetics , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...