Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.872
Filter
1.
BMC Immunol ; 25(1): 25, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702630

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS: We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION: Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.


Subject(s)
Breast Neoplasms , Lymph Nodes , Memory B Cells , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/blood , Middle Aged , Adult , Lymph Nodes/immunology , Lymph Nodes/pathology , Memory B Cells/immunology , Aged , Antigens, CD19/metabolism , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , B-Lymphocyte Subsets/immunology
2.
Front Immunol ; 15: 1380386, 2024.
Article in English | MEDLINE | ID: mdl-38707902

ABSTRACT

Introduction: B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods: By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results: We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion: These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.


Subject(s)
B-Lymphocyte Subsets , Flow Cytometry , Single-Cell Analysis , Humans , Flow Cytometry/methods , Single-Cell Analysis/methods , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunophenotyping/methods , Biomarkers , Multiomics
3.
Am J Hematol ; 99(6): 1084-1094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708915

ABSTRACT

Early mortality in sickle cell disease (SCD) is attributed to increased infections due to loss of splenic function. Marginal zone B cells are important for initial opsonization of pathogens and can be absent in spleen histopathology in SCD. The frequency of unswitched memory B cells (UMBC), the circulating correlate of marginal zone B cells, reflects the immunologic function of the spleen. We hypothesized that asplenia in SCD is associated with alterations in the peripheral blood lymphocyte population and explored whether UMBC deficiency was associated with a clinical phenotype. We analyzed B cell subsets and clinical history for 238 children with SCD and 63 controls. The median proportion of UMBCs was lower in children with SCD compared with controls (4.7% vs. 6.6%, p < .001). Naïve B cells were higher in SCD compared with controls (80.6 vs. 76.3%, respectively, p = .02). UMBC frequency declined by 3.4% per year increase in age in SCD (95% CI: 2%, 4.7%, p < .001), but not in controls. A majority of children in all cohorts had an IgM concentration in the normal range for age and there were no differences between groups (p = .13). Subjects developed titers adequate for long-term protection to fewer serotypes in the polysaccharide vaccine than controls (14.7 vs. 19.4, p < .001). In this cohort, bacteremia was rare and specific clinical complications were not associated with UMBC proportion. In summary, UMBC deficiency occurs in SCD and is associated with age. Future studies should investigate B cell subsets prospectively and identify the mechanism of B cell loss in the spleen.


Subject(s)
Anemia, Sickle Cell , Memory B Cells , Pneumococcal Vaccines , Humans , Anemia, Sickle Cell/immunology , Anemia, Sickle Cell/complications , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/therapeutic use , Child , Male , Female , Child, Preschool , Memory B Cells/immunology , Adolescent , B-Lymphocyte Subsets/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Spleen/immunology , Spleen/pathology , Immunoglobulin M/blood
4.
Autoimmunity ; 57(1): 2356089, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38770919

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic, inflammatory liver disease of unknown aetiology which requires lifelong immunosuppression. Most therapeutic and outcome studies of AIH have been conducted predominantly in Caucasian (European Ancestry, EA) cohorts, with the exclusion of African American (AA) patients due to inadequate sample size. It is known that AA patients have a severe phenotype of autoimmune diseases and demonstrate a poor response to conventional medical therapy. Understanding cellular and molecular pathways which determine AIH severity and progression in AA patients is likely to lead to the discovery of novel, personalised and better tolerated therapies. The aim of the study is to determine the distinct effector B cell phenotypes which contribute to disease severity and progression of AIH in AA children as compared to their EA cohorts. PBMCs were isolated from blood samples collected from patients visiting Children's Healthcare of Atlanta (CHOA) and were grouped into AA, (n = 12), EA, (n = 11) and controls (n = 12) and were processed for flow cytometry. Markers of B cell development, maturation and activation were assessed namely CD19, CD21, IgD, CD27, CD38, CD11c, CD24, CD138. AA children with AIH demonstrated an expansion of CD19 + ve, Activated Naïve (aN), (CD19+ IgD-/CD27- Double Negative (DN2) ([CD19+/IgD-/CD27++CD38++) cells. Plasmablasts were significantly higher along with Signalling Lymphocytic activation molecule F7 (SLAMF7). Unswitched memory [CD19+] IgD+CD27+ (USM) B cells were significantly contracted in AA patients with AIH. B cell phenotyping reveals a distinct profile in AA AIH patients with a major skewing towards the expansion of effector pathways which have been previously characterised in severe SLE in AA patients. These results suggest that the quantification and therapeutic target of B cell pathway could contribute substantially to the clinical approach to AIH especially in the AA population.


Subject(s)
B-Lymphocytes , Hepatitis, Autoimmune , Immunoglobulin D , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Humans , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/pathology , Hepatitis, Autoimmune/diagnosis , Immunoglobulin D/immunology , Immunoglobulin D/metabolism , Child , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Male , Female , Adolescent , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Child, Preschool , Immunophenotyping , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Age of Onset , Biomarkers
5.
Sci Rep ; 14(1): 11576, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773133

ABSTRACT

Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.


Subject(s)
Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Female , Mice , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor , Lymphocyte Activation Gene 3 Protein , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Antigens, CD/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymph Nodes/pathology , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Mice, Inbred BALB C
6.
Commun Biol ; 7(1): 584, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755239

ABSTRACT

B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.


Subject(s)
B-Lymphocytes , Humans , B-Lymphocytes/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Phenotype , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Male , Female , Adult
7.
Int J Rheum Dis ; 27(4): e15145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661314

ABSTRACT

OBJECTIVES: To determine the alteration of peripheral T and B cell subsets in patients with systemic sclerosis (SSc) and to evaluate their correlation with the progression of SSc. METHODS: We recruited 47 SSc patients and 45 healthy controls (HCs) in this study. Demographic and clinical data were then collected. Flow cytometry was used to detect the proportions of 44 different T and B cell subsets in circulating blood. RESULTS: The proportion of total B cells (p = .043) decreased in SSc patients, together with similar frequencies of total T cells, CD4+ T cells, and CD8+ T cells in both groups. Several subsets of T and B cells differed significantly between these two groups. Follicular helper T cells-1 (Tfh1) (p < .001), helper T cells-1 (Th1) (p = .001), regulatory T cells (Treg) (p = .004), effector memory CD8+ T cells (p = .041), and cytotoxic T cells-17 (Tc17) (p = .01) were decreased in SSc patients. Follicular helper T cells-2 (Tfh2) (p = .001) and, helper T cells-2 (Th2) (p = .001) levels increased in the SSc group. Regulatory B cells (Breg) (p = .015) were lower in the SSc group, together with marginal zone (MZ) B cells (p < .001), memory B cells (p = .001), and non-switched B cells (p = .005). The modified Rodnan skin score (mRSS) correlated with helper T cells-17 (Th17) (r = -.410, p = .004), Tfh1 (r = -.321, p = .028), peripheral helper T cells (Tph) (r = -.364, p = .012) and plasma cells (r = -.312, p = .033). CONCLUSIONS: The alterations in T and B cells implied immune dysfunction, which may play an essential role in systemic sclerosis.


Subject(s)
B-Lymphocyte Subsets , Scleroderma, Systemic , Humans , Female , Male , Middle Aged , Adult , Case-Control Studies , B-Lymphocyte Subsets/immunology , Scleroderma, Systemic/immunology , Scleroderma, Systemic/blood , Scleroderma, Systemic/diagnosis , T-Lymphocyte Subsets/immunology , Flow Cytometry , Phenotype , Disease Progression , Immunophenotyping , Aged
8.
Front Immunol ; 15: 1380641, 2024.
Article in English | MEDLINE | ID: mdl-38601144

ABSTRACT

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Subject(s)
B-Lymphocyte Subsets , Mice , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocytes , Immunoglobulin Light Chains/genetics , Translocation, Genetic , Immunoglobulin M , Cell Count
9.
Front Immunol ; 15: 1342285, 2024.
Article in English | MEDLINE | ID: mdl-38576618

ABSTRACT

B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.


Subject(s)
B-Lymphocyte Subsets , Deep Learning , Humans , Phylogeny , COVID-19 Vaccines , Receptors, Antigen, B-Cell/genetics
10.
Mol Immunol ; 170: 46-56, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615627

ABSTRACT

Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.


Subject(s)
Apoptosis , Interleukin-10 , Interleukins , Lipopolysaccharides , Peritoneum , Interleukins/immunology , Interleukins/metabolism , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/immunology , Mice , Interleukin-10/immunology , Interleukin-10/metabolism , Apoptosis/drug effects , Apoptosis/immunology , Peritoneum/immunology , Peritoneum/cytology , B-Lymphocyte Subsets/immunology , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , B-Lymphocytes/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , bcl-X Protein/metabolism , bcl-X Protein/immunology , Phosphorylation/drug effects , Antigens, CD19/immunology , Antigens, CD19/metabolism
11.
EBioMedicine ; 103: 105098, 2024 May.
Article in English | MEDLINE | ID: mdl-38608514

ABSTRACT

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).


Subject(s)
ADP-ribosyl Cyclase 1 , Carcinoma, Pancreatic Ductal , Humans , ADP-ribosyl Cyclase 1/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Animals , Mice , Prognosis , Antigens, CD19/metabolism , Antigens, CD19/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Female , Male , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cell Line, Tumor , Tumor Microenvironment/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Middle Aged , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Immunosuppression Therapy
12.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593796

ABSTRACT

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Subject(s)
Epigenesis, Genetic , Interferon Type I , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Memory B Cells , Animals , Interferon Type I/metabolism , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Mice , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Immunologic Memory/immunology , Chronic Disease , B-Lymphocyte Subsets/immunology , Single-Cell Analysis
13.
Vaccine ; 42(14): 3337-3345, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637212

ABSTRACT

OBJECTIVES: We explored the role of metabolic hormones and the B-cell repertoire in the association between nutritional status and vaccine responses. METHODS: In this prospective cohort study, nested within a larger randomized open-label trial, 211 South African children received two doses of measles vaccine and two or three doses of pneumococcal conjugate vaccine (PCV). Metabolic markers (leptin, ghrelin and adiponectin) and distribution of B-cell subsets (n = 106) were assessed at 18 months of age. RESULTS: Children with a weight-for-height z-score (WHZ) ≤ -1 standard deviation (SD) at booster vaccination had a decreased mean serotype-specific PCV IgG response compared with those with WHZ > -1 and <+1 SD or WHZ ≥ +1 SD at 9 months post-booster (18 months of age). (Naive) pre-germinal center B-cells were associated with pneumococcal antibody decay between one to nine months post-booster. Predictive performance of elastic net models for the combined effect of B-cell subsets, metabolic hormones and nutritional status (in addition to age, sex, and randomization group) on measles and PCV vaccine response had an average area under the receiver operating curve of 0.9 and 0.7, respectively. CONCLUSIONS: The combined effect of B-cell subsets, metabolic hormones and nutritional status correlated well with the vaccination response for measles and most PCV serotypes. CLINICALTRIALS: gov registration of parent studies: NCT02943902 and NCT03330171.


Subject(s)
Antibodies, Bacterial , Measles Vaccine , Nutritional Status , Pneumococcal Vaccines , Humans , South Africa , Male , Female , Nutritional Status/immunology , Prospective Studies , Infant , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Measles Vaccine/immunology , Measles Vaccine/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Leptin/blood , B-Lymphocytes/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunization, Secondary , Immunoglobulin G/blood , Ghrelin/immunology , B-Lymphocyte Subsets/immunology , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccination
14.
J Immunol ; 212(12): 1913-1921, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38647373

ABSTRACT

Using an Ig H chain conferring specificity for N-acetyl-d-glucosamine (GlcNAc), we developed transgenic (VHHGAC39 TG) mice to study the role of self-antigens in GlcNAc-reactive B-1 B cell development. In VHHGAC39 TG mice, GlcNAc-reactive B-1 B cell development during ontogeny and in adult bone marrow was normal. However, adult TG mice exhibited a block at transitional-2 immature B cell stages, resulting in impaired allelic exclusion and accumulation of a B cell subset coexpressing endogenous Ig gene rearrangements. Similarly, VHHGAC39 B cell fitness was impeded compared with non-self-reactive VHJ558 B TG cells in competitive mixed bone marrow chimeras. Nonetheless, adult VHHGAC39 mice immunized with Streptococcus pyogenes produce anti-GlcNAc Abs. Peritoneal cavity B cells transferred from VHHGAC39 TG mice into RAG-/- mice also exhibited robust expansion and anti-GlcNAc Ab production. However, chronic treatment of young VHHGAC39 mice with GlcNAc-specific mAbs leads to lower GlcNAc-binding B cell frequencies while increasing the proportion of GlcNAc-binding B1-a cells, suggesting that Ag masking or clearance of GlcNAc Ags impedes maturation of newly formed GlcNAc-reactive B cells. Finally, BCR H chain editing promotes expression of endogenous nontransgenic BCR alleles, allowing potentially self-reactive TG B cells to escape anergy or deletion at the transitional stage of precursor B cell development. Collectively, these observations indicate that GlcNAc-reactive B cell development is sensitive to the access of autologous Ags.


Subject(s)
Acetylglucosamine , Mice, Transgenic , Animals , Mice , Acetylglucosamine/immunology , Cell Differentiation/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunity, Innate/immunology , B-Lymphocyte Subsets/immunology , Mice, Inbred C57BL , Autoantigens/immunology , Streptococcus pyogenes/immunology , B-Lymphocytes/immunology
15.
Parasite Immunol ; 46(3): e13031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527908

ABSTRACT

In visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients. In the peripheral blood of PKDL patients, immunophenotyping of B cell subsets was performed by flow cytometry and by immunohistochemistry at lesional sites. The functionality of B cells was assessed in terms of skin IgG by immunofluorescence, while the circulating levels of B cell chemoattractants (CCL20, CXCL13, CCL17, CCL22, CCL19, CCL27, CXCL9, CXCL10 and CXCL11) were evaluated by a multiplex assay. In patients with PKDL as compared with healthy controls, there was a significant decrease in pan CD19+ B cells. However, within the CD19+ B cell population, there was a significantly raised proportion of switched memory B cells (CD19+IgD-CD27+) and plasma cells (CD19+IgD-CD38+CD27+). This was corroborated at lesional sites where a higher expression of CD20+ B cells and CD138+ plasma cells was evident; they were Ki67 negative and demonstrated a raised IgG. The circulating levels of B cell chemoattractants were raised and correlated positively with lesional CD20+ B cells. The increased levels of B cell homing markers possibly accounted for their enhanced presence at the lesional sites. There was a high proportion of plasma cells, which accounted for the increased presence of IgG that possibly facilitated parasite persistence and disease progression.


Subject(s)
B-Lymphocyte Subsets , Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Humans , Skin , Immunoglobulin G
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 267-272, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38512037

ABSTRACT

CD93 is expressed in progenitor B (pro-B) cells, precursor B (pre-B) cells and various immature B cells. It can interact with moesin, MMRN2 and other molecules to participate in cell migration, adhesion and phagocytosis, so it plays an important role in inflammation and angiogenesis. Detection of CD93+ B cell subsets has a crucial role in the diagnosis, treatment and prognosis monitoring of inflammation and inflammation-related diseases, such as Helicobacter pylori-related gastritis, sepsis, non-obese diabetes and periodontitis.


Subject(s)
B-Lymphocyte Subsets , Sepsis , Humans , Inflammation , Phagocytosis , Cell Movement
17.
Front Immunol ; 15: 1327672, 2024.
Article in English | MEDLINE | ID: mdl-38433828

ABSTRACT

Introduction: Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS). Recently, we showed that one year after the initiation of cladribine treatment, T and B cell crosstalk was impaired, reducing potentially pathogenic effector functions along with a specific reduction of autoreactivity to RAS guanyl releasing protein 2 (RASGRP2). In the present study we conducted a longitudinal analysis of the effect of cladribine treatment in patients with RRMS, focusing on the extent to which the effects observed on T and B cell subsets and autoreactivity after one year of treatment are maintained, modulated, or amplified during the second year of treatment. Methods: In this case-control exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 52 (W52), 60 (W60), 72 (W72) and 96 (W96) weeks, were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. Results: We found a substantial reduction in circulating memory B cells and proinflammatory B cell responses. Furthermore, we observed reduced T cell responses to autoantigens possibly presented by B cells (RASGRP2 and a-B crystallin (CRYAB)) at W52 and W96 and a further reduction in responses to the myelin antigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) after 96 weeks. Conclusion: We conclude that the effects of cladribine observed after year one are maintained and, for some effects, even increased two years after the initiation of a full course of treatment with cladribine tablets.


Subject(s)
B-Lymphocyte Subsets , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Cladribine/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Myelin-Oligodendrocyte Glycoprotein , Guanine Nucleotide Exchange Factors
18.
J Ethnopharmacol ; 328: 118072, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38508431

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Formula (BSF) is the effective traditional Chinese medicine (TCM) for chronic hepatitis B (CHB) according to our previous researches. However, the special effectiveness of BSF treating CHB patients in different stages and the immunoregulatory mechanisms remain to be explored. AIM OF THE STUDY: To compare the therapeutic effects of BSF in both treatment-naive patients and Peg-IFN-α-treated patients, and explore the potential mechanism of immunomodulation. MATERIALS AND METHODS: Ultra-high performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry and the TCMSP database were used to determine the main components of BSF. Two hundred and sixty-six patients were enrolled in the retrospective study, and they were divided into the treatment group (T-Group, BSF plus Peg-IFN-α) and the control group (C-Group, Peg-IFN-α monotherapy). Within each group, patients were further grouped into subgroups, namely T1/C1 groups (treatment-naive patients, T1 = 34, C1 = 94) and T2/C2 groups (Peg-IFN-α-treated patients, T2 = 56, C2 = 82). Serum HBV markers, serum HBV DNA levels, serum ALT/AST and TCM symptoms were obtained from the record. Bioinformatics analysis was employed to obtain the potential immunoregulatory mechanisms of BSF treating CHB patients. Among patients in T2 and C2 group, peripheral mononuclear cells from 36 patients were used to analyze the characteristics of peripheral follicular helper T (Tfh) cells and B-cell subtypes by flow cytometry. Preparation of BSF-containing serum in rats. In vitro, the co-culture system of CXCR5+ cells and HepG2.2.15 cells was built to investigate the immunoregulatory effects of BSF. RESULTS: A total of 14 main active compounds were detected in BSF, which were deemed critical for the treatment of CHB. Our findings indicated that the T2-Group exhibited the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the C2-Group (35.7% vs. 15.9%, P = 0.033; 33.9% vs. 11.0%, P = 0.002). Additionally, the T2-Group demonstrated the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the T1-Group (35.7% vs. 14.7%, P = 0.031; 33.9% vs. 2.9%, P = 0.000). The total effective rate based on TCM clinical syndrome in T1-Group and T2-Group were significantly greater than those in C1-Group and C2-Group (85.3% vs. 61.7%, P = 0.012; 89.1% vs. 63.4%, P = 0.000). Bioinformatics analysis indicated that the immunoregulatory mechanisms of BSF treating CHB patients were mainly linked to the growth and stimulation of B-cell, T-cell differentiation, and the signaling pathway of the B-cell receptor. Furthermore, the frequencies of Tfh cells and its IL-21 level, and the IL-21R expressed by B-cell were all increased after BSF treatment. Additionally, in the co-culture system of CXCR5+ cells and HepG2.2.15 cells, HBsAg and HBeAg levels were decreased after BSF-containing serum treatment,as well as the up-regulating of Tfh cell frequencies and down-regulating of B-cell frequencies. CONCLUSIONS: BSF have the higher percentage of HBsAg decline and HBeAg seroclearance in Peg-IFN-α-treated patients compared with treatment-naive patients. The potential immunoregulatory mechanism may correlate with promoting the interaction between Tfh cells and B-cell through IL-21/IL-21R signaling pathway.


Subject(s)
B-Lymphocyte Subsets , Drugs, Chinese Herbal , Hepatitis B, Chronic , Humans , Rats , Animals , Hepatitis B Surface Antigens , Hepatitis B virus , T Follicular Helper Cells , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/diagnosis , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis B e Antigens , Retrospective Studies , Biomarkers , DNA, Viral , Treatment Outcome , Polyethylene Glycols/therapeutic use
19.
J Immunol ; 212(10): 1540-1552, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38517295

ABSTRACT

Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , Male , Middle Aged , Female , SARS-CoV-2/immunology , Aged , B-Lymphocytes/immunology , B-Lymphocyte Subsets/immunology , Severity of Illness Index , Adult , Apoptosis/immunology , Critical Illness , Interleukin-10/immunology , Interleukin-10/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
20.
Semin Immunol ; 72: 101864, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301345

ABSTRACT

Our current understanding of whether B cell involvement in the tumor microenvironment benefits the patient or the tumor - in distinct cancers, subcohorts and individual patients - is quite limited. Both statements are probably true in most cases: certain clonal B cell populations contribute to the antitumor response, while others steer the immune response away from the desired mechanics. To step up to a new level of understanding and managing B cell behaviors in the tumor microenvironment, we need to rationally discern these roles, which are cumulatively defined by B cell clonal functional programs, specificities of their B cell receptors, specificities and isotypes of the antibodies they produce, and their spatial interactions within the tumor environment. Comprehensive analysis of these characteristics of clonal B cell populations is now becoming feasible with the development of a whole arsenal of advanced technical approaches, which include (1) methods of single-cell and spatial transcriptomics, genomics, and proteomics; (2) methods of massive identification of B cell specificities; (3) methods of deep error-free profiling of B cell receptor repertoires. Here we overview existing techniques, summarize their current application for B cells studies and propose promising future directions in advancing B cells exploration.


Subject(s)
B-Lymphocyte Subsets , Neoplasms , Humans , B-Lymphocytes , Receptors, Antigen, B-Cell , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...