Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 6(3)2021 05 19.
Article in English | MEDLINE | ID: mdl-34011687

ABSTRACT

Candida albicans is a human fungal pathogen capable of causing life-threatening infections. The ability to edit the C. albicans genome using CRISPR/Cas9 is an important tool investigators can leverage in their search for novel therapeutic targets. However, wild-type Cas9 requires an NGG protospacer adjacent motif (PAM), leaving many AT-rich regions of DNA inaccessible. A recently described near-PAMless CRISPR system that utilizes the SpRY Cas9 variant can target non-NGG PAM sequences. Using this system as a model, we developed C. albicans CRISPR/SpRY. We tested our system by mutating C. albicansADE2 and show that CRISPR/SpRY can utilize non-NGG PAM sequences in C. albicans Our CRISPR/SpRY system will allow researchers to efficiently modify C. albicans DNA that lacks NGG PAM sequences.IMPORTANCE Genetic modification of the human fungal pathogen Candida albicans allows us to better understand how fungi differ from humans at the molecular level and play essential roles in the development of therapeutics. CRISPR/Cas9-mediated genome editing systems can be used to introduce site-specific mutations to C. albicans However, wild-type Cas9 is limited by the requirement of an NGG PAM site. CRISPR/SpRY targets a variety of different PAM sequences. We modified the C. albicans CRISPR/Cas9 system using the CRISPR/SpRY as a guide. We tested CRISPR/SpRY on C. albicansADE2 and show that our SpRY system can facilitate genome editing independent of an NGG PAM sequence, thus allowing the investigator to target AT-rich sequences. Our system will potentially enable mutation of the 125 C. albicans genes which have been previously untargetable with CRISPR/Cas9. Additionally, our system will allow for precise targeting of many genomic locations that lack NGG PAM sites.


Subject(s)
B30.2-SPRY Domain/genetics , CRISPR-Cas Systems/genetics , Candida albicans/genetics , Gene Editing/methods , Genome, Fungal , CRISPR-Associated Protein 9/genetics , Candida albicans/pathogenicity , Humans , Mutation
2.
Nat Plants ; 7(1): 25-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33398158

ABSTRACT

The rapid development of the CRISPR-Cas9, -Cas12a and -Cas12b genome editing systems has greatly fuelled basic and translational plant research1-6. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G)7, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant8. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing/methods , Genome, Plant/genetics , B30.2-SPRY Domain/genetics , Larix/genetics , Oryza/genetics , Protoplasts
3.
Semin Cell Dev Biol ; 111: 76-85, 2021 03.
Article in English | MEDLINE | ID: mdl-33092958

ABSTRACT

TRIM (Tripartite motif) and TRIM-like proteins have emerged as an important class of E3 ligases in innate immunity. Their functions range from activation or regulation of innate immune signaling pathway to direct detection and restriction of pathogens. Despite the importance, molecular mechanisms for many TRIM/TRIM-like proteins remain poorly characterized, in part due to challenges of identifying their substrates. In this review, we discuss several TRIM/TRIM-like proteins in RNA sensing pathways and viral restriction functions. We focus on those containing PRY-SPRY, the domain most frequently used for substrate recognition, and discuss emerging mechanisms that are commonly utilized by several TRIM/TRIM-like proteins to tightly control their interaction with the substrates.


Subject(s)
B30.2-SPRY Domain/genetics , DEAD Box Protein 58/genetics , Immunity, Innate , Interferon-Induced Helicase, IFIH1/genetics , Receptors, Immunologic/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , DEAD Box Protein 58/immunology , Gene Expression Regulation , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Multigene Family , Receptors, Immunologic/immunology , Signal Transduction , Substrate Specificity , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/classification , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/classification , Ubiquitin-Protein Ligases/immunology
4.
Poult Sci ; 98(11): 6019-6025, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31309233

ABSTRACT

Emerging evidence suggests that some members of the tripartite motif (TRIM) family play a crucial role in antiretroviral. However, the chicken TRIM62 antiretroviral activity is unknown. Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus mainly inducing tumor formation and immunosuppression. The purpose of the study was to explore chicken TRIM62's role in ALV-J replication. In this study, we first tested the RNA expression of ALV-J and TRIM62 in chicken embryo fibroblasts (CEFs) cells infected with ALV-J by qRT-PCR. The result showed that ALV-J infection affected TRIM62 RNA expression, first upregulation and then downregulation, with the time course infection of ALV-J. Then, we silenced and overexpressed the TRIM62 to evaluate the effect of TRIM62 on ALV-J replication by qRT-PCR. We found that the knockdown of TRIM62 in CEF cells with shRNA targeting SPRY domain enhanced the viral replication more significantly than that with shRNA targeting coiled coil/unstructured domain, and overexpression of TRIM62 inhibited the viral replication. Further, we detected the effect of the domain deletion on TRIM62's antiviral activity. The result demonstrated that deletion of RING, B-box, coiled-coil domains partially abolished TRIM62's antiviral activity, while SPRY domain deletion resulted in the disappearance of antiviral activity of TRIM62. Taken together, our findings strongly suggested that TRIM62 plays an important role in the restriction of ALV-J replication, and SPRY domain is a prerequisite for the antiviral activity of TRIM62.


Subject(s)
Avian Leukosis Virus/physiology , Avian Proteins/metabolism , B30.2-SPRY Domain/genetics , Chickens/virology , Tripartite Motif Proteins/metabolism , Virus Replication , Animals , Chick Embryo , Fibroblasts/virology , Gene Expression Regulation
5.
J Immunol ; 203(3): 607-626, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31227581

ABSTRACT

Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.


Subject(s)
Antigens, CD/genetics , B30.2-SPRY Domain/genetics , Butyrophilins/genetics , CD8-Positive T-Lymphocytes/immunology , Hemiterpenes/immunology , Organophosphates/immunology , Organophosphorus Compounds/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Amino Acid Sequence/genetics , Amino Acid Substitution/genetics , Antigens, CD/immunology , Butyrophilins/immunology , Dimerization , Humans , Lymphocyte Activation/immunology , Molecular Dynamics Simulation
6.
Biochem J ; 475(2): 429-440, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29259080

ABSTRACT

The retinoic acid-inducible gene-I (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tripartite motif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 (caspase activation and recruitment domains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members.


Subject(s)
B30.2-SPRY Domain/genetics , Caspase Activation and Recruitment Domain/genetics , DEAD Box Protein 58/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Recombinant Fusion Proteins/chemistry , Sequence Deletion , Amino Acid Sequence , Animals , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HEK293 Cells , Histidine/genetics , Histidine/metabolism , Humans , Mice , Models, Molecular , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Immunologic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Sci Rep ; 7: 39961, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079123

ABSTRACT

Monocyte apoptosis is a key mechanism that orchestrates host immune responses during sepsis. TRIM22 is constitutively expressed at high levels in monocytes and plays important roles in the antiviral response and inflammation. Overexpression of TRIM22 interferes with the clonogenic growth of monocytic cells, suggesting that TRIM22 may regulate monocyte survival. However, the effect of TRIM22 on monocyte apoptosis remains unknown. In the present report, lipopolysaccharides (LPS)-primed human peripheral blood monocytes expressing higher levels of TRIM22 were more sensitive to apoptosis. This phenomenon was also observed in TRIM22-overexpressing THP-1 monocytes and was associated with the activation of caspase-9 and caspase-3, as well as the increased expression and oligomerization of the pro-apoptotic protein Bak. Similar expression patterns of TRIM22 and Bak were also observed in LPS-primed, apoptotic human peripheral blood monocytes. In addition, the deletion of either the RING domain or the SPRY domain of TRIM22 significantly attenuated TRIM22-mediated monocyte apoptosis and decreased Bak expression and oligomerization. Furthermore, in monocytes from septic patients, TRIM22 levels were down-regulated and positively correlated with Bak levels. Taken together, these results indicate that TRIM22 plays a critical role in monocyte apoptosis by regulating Bak oligomerization and may have a potential function in the pathogenesis of sepsis.


Subject(s)
Apoptosis , Minor Histocompatibility Antigens/metabolism , Repressor Proteins/metabolism , Tripartite Motif Proteins/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Adult , Aged , Apoptosis/drug effects , B30.2-SPRY Domain/genetics , Caspase 3/metabolism , Caspase 9/metabolism , Cells, Cultured , Down-Regulation , Female , Humans , Lipopolysaccharides/pharmacology , Male , Middle Aged , Minor Histocompatibility Antigens/genetics , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Protein Multimerization , Repressor Proteins/genetics , Sepsis/metabolism , Sepsis/pathology , Tripartite Motif Proteins/genetics
8.
Sci Rep ; 6: 32336, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27578425

ABSTRACT

Tripartite motif 14 (TRIM14) was reported to function as a mitochondrial signaling adaptor in mediating innate immune responses. However, the involvement of TRIM14 in host defense against viral infection and molecular mechanisms remain unclear. Here, we demonstrated that enforced expression of TRIM14 could potently inhibit the infection and replication of HCV in hepatocytes, whereas TRIM14 knockout cells became more susceptible to HCV infection. Interestingly, further experiments revealed that such anti-HCV activity was independent of activating the NF-κB or interferon pathways but required the C-terminal SPRY domain of no signaling capacity. In searching for mechanisms how TRIM14 exerts its antiviral function we found that TRIM14 interacted with HCV encoded non-structural protein NS5A and could strongly induce its degradation dependent on the NS5A1 subdomain. Interestingly extensive domain mapping analyses revealed that NS5A degradation was mediated by the highly conserved SPRY domain of TRIM14, which might involve the K48 ubiquitination pathway. Collectively, our work uncovered a new mechanism responsible for host defense against HCV infection, and could potentially aid the development of novel anti-HCV therapeutics.


Subject(s)
Carrier Proteins/genetics , Hepacivirus/genetics , Hepatitis C/genetics , Viral Nonstructural Proteins/genetics , B30.2-SPRY Domain/genetics , Gene Knockout Techniques , Hepacivirus/chemistry , Hepacivirus/pathogenicity , Hepatitis C/virology , Hepatocytes , Host-Pathogen Interactions/genetics , Humans , Intracellular Signaling Peptides and Proteins , Proteolysis , Tripartite Motif Proteins , Ubiquitination , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...