Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Pathol ; 256(3): 310-320, 2022 03.
Article in English | MEDLINE | ID: mdl-34825713

ABSTRACT

The clinical significance of B7H3 (CD276) and its cleavage product soluble B7H3 (sB7H3) in idiopathic pulmonary fibrosis (IPF) is unknown. Mounting evidence suggests the potential utility of peripheral blood myeloid cell enumeration to predict disease outcome and indicate active lung disease. Here we hypothesized that sB7H3 is involved in regulation of circulating myeloid cells in pulmonary fibrosis. In support of this possibility, both plasma sB7H3 and B7H3+ cells were elevated in IPF patient blood samples, which correlated negatively with lung function. To analyze its function, the effects of sB7H3 on naïve or bleomycin-treated mice were examined. The results revealed that sB7H3 injection induced an influx of myeloid-derived suppressor cells (MDSCs) and Ccl2 expression in lung tissue of naïve mice, accompanied by enhanced overall inflammation. Additionally, sB7H3 caused accumulation of MDSCs in bone marrow with increased expression of inflammatory cytokines. Notably, in vitro assays revealed chemotaxis of MDSCs to sB7H3, which was dependent on TLT-2 (TREML2), a putative receptor for sB7H3. Thus, increased circulating sB7H3 and/or B7H3+ cells in IPF patient blood samples correlated with lung function decline and potential immunosuppressive status. The correlation of sB7H3 with deterioration of lung function might be due to its ability to enhance inflammation and recruitment of MDSCs into the lung and their expansion in the bone marrow, and thus potentially contribute to IPF exacerbation. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
B7 Antigens/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Aged , Animals , B7 Antigens/genetics , B7 Antigens/toxicity , Bleomycin , Case-Control Studies , Cells, Cultured , Chemokine CCL2/metabolism , Chemotaxis , Disease Models, Animal , Disease Progression , Female , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice, Inbred C57BL , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Receptors, Immunologic/metabolism , Signal Transduction
2.
J Mol Neurosci ; 50(1): 146-53, 2013 May.
Article in English | MEDLINE | ID: mdl-23054584

ABSTRACT

B7-H3, a new member of the B7 superfamily, plays a key role in the regulation of T cell-mediated immune responses. Our previous work showed that B7-H3 strongly augmented both LPS- and bacterial lipoprotein-induced NF-κB activation and inflammatory response, and soluble B7-H3 was elevated in CSF and plasma of patients with bacterial meningitis. MMP-9 has been implicated in blood-brain barrier disruption, inflammation, and vasculitis during the pathogenesis of bacterial meningitis. In this study, we report that in a murine model of pneumococcal meningitis, B7-H3 treatment enhances inflammatory response in the meninges, upregulates MMP-9 expression in cerebral parenchyma, and deteriorates clinical disease status indicated by weight loss and impaired movement ability. In vitro results showed that B7-H3 augmented MMP-9 secretion from Streptococcus pneumoniae-stimulated microglia cells. Thus, our data indicate that B7-H3 contributes to the development of pneumococcal meningitis by exaggerating inflammatory responses and upregulating MMP-9 activity in CNS, which ultimately lead to neuronal injury.


Subject(s)
B7 Antigens/toxicity , Matrix Metalloproteinase 9/metabolism , Meningitis, Pneumococcal/immunology , Animals , Brain/metabolism , Disease Models, Animal , Matrix Metalloproteinase 9/genetics , Meninges/immunology , Meninges/metabolism , Meningitis, Pneumococcal/enzymology , Meningitis, Pneumococcal/pathology , Mice , Mice, Inbred BALB C , Microglia/immunology , Microglia/metabolism , Movement , Transcription, Genetic , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL