Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.235
Filter
1.
Biomed Res ; 45(3): 115-123, 2024.
Article in English | MEDLINE | ID: mdl-38839354

ABSTRACT

Mixed lymphocyte culture under the blockade of CD80/CD86-CD28 co-stimulation induces anergic (completely hyporesponsive) T cells with immune suppressive function (inducible suppressing T cells: iTS cells). Previously, iTS cell therapy has demonstrated outstanding benefits in clinical trials for organ transplantation. Here, we examined whether peptide antigen-specific iTS cells are inducible. DO 11.10 iTS cells were obtained from splenocytes of BALB/c DO 11.10 mice by stimulation with OVA peptide and antagonistic anti-CD80/CD86 mAbs. When DO 11.10 iTS or Foxp3- DO 11.10 iTS cells were stimulated with OVA, these cells produced IL-13, but not IL-4. DO 11.10 iTS cells decreased IL-4 and increased IL-13 production from OVA-stimulated naïve DO 11.10 splenocytes. When Foxp3+ DO 11.10 iTS cells were prepared, these cells significantly inhibited the production of IL-4 and IL-13 compared with freshly isolated Foxp3+ DO 11.10 T cells. Moreover, an increase in the population expressing OX40, ICOS, and 4-1BB suggested activation of Foxp3+ DO 11.10 iTS cells. Thus, blockade of CD80/CD86-CD28 co-stimulation during peptide antigen stimulation augments the inhibitory function of Foxp3+ regulatory T cells, and does not induce anergic Foxp3- conventional T cells. Peptide-specific Foxp3+ regulatory iTS cells could be useful for the treatment of allergic and autoimmune diseases without adverse effects.


Subject(s)
B7-1 Antigen , B7-2 Antigen , CD28 Antigens , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , CD28 Antigens/immunology , CD28 Antigens/metabolism , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , B7-2 Antigen/metabolism , B7-2 Antigen/immunology , Mice, Inbred BALB C , Forkhead Transcription Factors/metabolism , Peptides/pharmacology , Peptides/immunology , Lymphocyte Activation/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Interleukin-13/metabolism , Interleukin-13/immunology , Ovalbumin/immunology , Spleen/immunology , Spleen/cytology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology
2.
Arch Dermatol Res ; 316(7): 348, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849562

ABSTRACT

This study investigates the mechanism through which paeoniflorin inhibits TSLP expression to regulate dendritic cell activation in corticosteroid-dependent dermatitis treatment. Utilizing databases like TCMSP, we identified paeoniflorin's components, targets, and constructed networks. Molecular docking and gene enrichment analysis helped pinpoint key targets and pathways affected by paeoniflorin. In vitro and in vivo models were used to study CD80, CD86, cytokines, T-cell activation, skin lesions, histopathological changes, TSLP, CD80, and CD86 expression. Our study revealed paeoniflorin's active constituent targeting IL-6 in corticosteroid-dependent dermatitis. In vitro experiments demonstrated reduced TSLP expression, CD80, CD86, and cytokine secretion post-paeoniflorin treatment. In vivo, paeoniflorin significantly decreased skin lesion severity, cytokine levels, TSLP, CD80, and CD86 expression. The study highlights paeoniflorin's efficacy in inhibiting TSLP expression and suppressing dendritic cell activation in corticosteroid-dependent dermatitis, suggesting its potential as a therapeutic intervention. Additionally, it offers insights into the complex molecular mechanisms underlying paeoniflorin's anti-inflammatory properties in treating corticosteroid-dependent dermatitis.


Subject(s)
Cytokines , Dendritic Cells , Glucosides , Monoterpenes , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Cytokines/metabolism , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Humans , Mice , Dermatitis/drug therapy , Dermatitis/immunology , Dermatitis/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation , Skin/pathology , Skin/drug effects , Skin/immunology , Skin/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Male , Thymic Stromal Lymphopoietin , Lymphocyte Activation/drug effects
3.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
4.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38586879

ABSTRACT

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Subject(s)
Antigens, CD1d , Atherosclerosis , B7-1 Antigen , Hyperlipidemias , Lipoproteins, LDL , Macrophages , Natural Killer T-Cells , Animals , Humans , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Hyperlipidemias/immunology , Hyperlipidemias/metabolism , Lipoproteins, LDL/immunology , Lipoproteins, LDL/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Female , Middle Aged
5.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677291

ABSTRACT

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Subject(s)
B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
6.
Cancer ; 130(13): 2272-2286, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38644692

ABSTRACT

BACKGROUND: Long-term daily use of aspirin reduces incidence and mortality due to colorectal cancer (CRC). This study aimed to analyze the effect of aspirin on the tumor microenvironment, systemic immunity, and on the healthy mucosa surrounding cancer. METHODS: Patients with a diagnosis of CRC operated on from 2015 to 2019 were retrospectively analyzed (METACCRE cohort). Expression of mRNA of immune surveillance-related genes (PD-L1, CD80, CD86, HLA I, and HLA II) in CRC primary cells treated with aspirin were extracted from Gene Expression Omnibus-deposited public database (GSE76583). The experiment was replicated in cell lines. The mucosal immune microenvironment of a subgroup of patients participating in the IMMUNOREACT1 (ClinicalTrials.gov NCT04915326) project was analyzed with immunohistochemistry and flow cytometry. RESULTS: In the METACCRE Cohort, 12% of 238 patients analyzed were aspirin users. Nodal metastasis was significantly less frequent (p = .008) and tumor-infiltrating lymphocyte infiltration was higher (p = .02) among aspirin users. In the CRC primary cells and selected cell lines, CD80 mRNA expression was increased following aspirin treatment (p = .001). In the healthy mucosa surrounding rectal cancer, the ratio of CD8/CD3 and epithelial cells expressing CD80 was higher in aspirin users (p = .027 and p = .034, respectively). CONCLUSIONS: These data suggested that regular aspirin use may have an active role in enhancing immunosurveillance against CRC.


Subject(s)
Aspirin , Colorectal Neoplasms , Immunologic Surveillance , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Humans , Aspirin/therapeutic use , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Female , Male , Tumor Microenvironment/immunology , Aged , Middle Aged , Immunologic Surveillance/drug effects , Retrospective Studies , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , B7-1 Antigen/metabolism , B7-1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 215-221, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38512031

ABSTRACT

Objective To compare the functional differences between bone marrow derived macrophages and peritoneal macrophages, which may provide the basis for the selection of macrophages in immunological research and immunoregulatory drug evaluation. Methods Marophage colony-stimulating factor (M-CSF) was used to induce the differentiation of bone marrow monocytes into macrophages, and thioglycolate medium was used to induce peritonitis to obtain peritoneal macrophages. After both macrophages being stimulated by zymosan, LPS, R848 and CpG respectively, mRNA levels of tumor necrosis factor α(TNF-α), interleukin 6(IL-6), macrophage inflammatory protein 1α(MIP-1α), monocyte chemoattractant protein 1(MCP-1) were measured by Real-time fluorescent quantitative PCR and the concentrations of secreted TNF-α, IL-6, MIP-1α and MCP-1 were detected by ELISA. In addition, the expression of costimulatory molecules CD80, CD86, CD40 and histocompatibility complex II (MHC II) on the cell surface was analyzed by flow cytometry. Results After inducing by different TLR ligands, mRNA expression levels of inflammatory cytokines and chemokines were increased in both macrophages. The secretion of TNF-α, IL-6, MIP-1α and MCP-1 in peritoneal macrophages and the expression of CD86 and MHC II on the surface of peritoneal macrophages were significantly higher than those of bone marrow derived macrophages. Conclusion There are significant differences in the expression of inflammatory factors, chemokines, costimulatory molecules, and histocompatibility complex between bone marrow derived macrophages and peritoneal macrophages. Peritoneal macrophages have more complete macrophage function and is more suitable for immunological research and immunomodulatory drug evaluation.


Subject(s)
Bone Marrow , Peritoneal Cavity , Animals , Mice , Chemokine CCL3/genetics , Interleukin-6 , Tumor Necrosis Factor-alpha , Macrophages , B7-1 Antigen , CD40 Antigens , RNA, Messenger
8.
Fish Shellfish Immunol ; 148: 109482, 2024 May.
Article in English | MEDLINE | ID: mdl-38458503

ABSTRACT

CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.


Subject(s)
CD28 Antigens , Flounder , Animals , CD28 Antigens/genetics , Lymphocyte Activation , B7-1 Antigen/genetics , Cell Adhesion Molecules , CD4-Positive T-Lymphocytes
9.
J Virol Methods ; 327: 114921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552881

ABSTRACT

Dendritic cells (DCs) play a pivotal role in maintaining immune tolerance. Using recombinant adenovirus (rAd) to deliver vectors to immature dendritic cells (imDCs) is an important method for studying the tolerogenic function of DCs. We found that using RPMI medium and a higher MOI during transduction increased the expression of CD80, CD86, and MHC-II on the surface of imDCs. Our data reveal a significant increase in the secretion of the pro-inflammatory cytokine IL-6 in the group showing the most pronounced phenotypic changes. In the mouse heart transplant model, imDCs with unstable phenotype and function due to adenoviral transduction resulted in an increased proportion of Th1 and Th17 cells in recipients. However, these effects can be managed, and our proposed optimized transduction strategy significantly minimizes these adverse effects. Our study holds significant implications for the development and optimization of immunotherapy utilizing tolerogenic dendritic cells.


Subject(s)
Adenoviridae , Dendritic Cells , Genetic Vectors , Immunotherapy , Transduction, Genetic , Dendritic Cells/immunology , Animals , Adenoviridae/genetics , Mice , Immunotherapy/methods , Genetic Vectors/genetics , Heart Transplantation , Mice, Inbred C57BL , Interleukin-6/metabolism , Immune Tolerance , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , B7-2 Antigen/metabolism , B7-2 Antigen/genetics
10.
Nat Cancer ; 5(5): 760-773, 2024 May.
Article in English | MEDLINE | ID: mdl-38503896

ABSTRACT

Chimeric antigen receptor T cells have dramatically improved the treatment of hematologic malignancies. T cell antigen receptor (TCR)-based cell therapies are yet to achieve comparable outcomes. Importantly, chimeric antigen receptors not only target selected antigens but also reprogram T cell functions through the co-stimulatory pathways that they engage upon antigen recognition. We show here that a fusion receptor comprising the CD80 ectodomain and the 4-1BB cytoplasmic domain, termed 80BB, acts as both a ligand and a receptor to engage the CD28 and 4-1BB pathways, thereby increasing the antitumor potency of human leukocyte antigen-independent TCR (HIT) receptor- or TCR-engineered T cells and tumor-infiltrating lymphocytes. Furthermore, 80BB serves as a switch receptor that provides agonistic 4-1BB co-stimulation upon its ligation by the inhibitory CTLA4 molecule. By combining multiple co-stimulatory features in a single antigen-agnostic synthetic receptor, 80BB is a promising tool to sustain CD3-dependent T cell responses in a wide range of targeted immunotherapies.


Subject(s)
CD28 Antigens , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Antigen, T-Cell/immunology , CD28 Antigens/immunology , Animals , Mice , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , B7-1 Antigen/immunology , T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Cell- and Tissue-Based Therapy/methods
11.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467718

ABSTRACT

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Subject(s)
Acyltransferases , B7-1 Antigen , Lipoylation , Lymphocyte Activation , Humans , B7-1 Antigen/metabolism , Acyltransferases/metabolism , HEK293 Cells , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Protein Processing, Post-Translational , Ubiquitination
12.
J Virol ; 98(3): e0201023, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376148

ABSTRACT

Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.


Subject(s)
Eye Infections , Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , B7-1 Antigen/genetics , Eye , Eye Infections/metabolism , Eye Infections/virology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Trigeminal Ganglion , Virus Activation , Virus Latency
13.
J Clin Invest ; 134(6)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349740

ABSTRACT

Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.


Subject(s)
CD28 Antigens , Neoplasms , Animals , Humans , Mice , B7-1 Antigen/genetics , B7-H1 Antigen , CTLA-4 Antigen/genetics , Disease Models, Animal , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes, Regulatory
14.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354702

ABSTRACT

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Subject(s)
Autoimmune Diseases , CD28 Antigens , Humans , CD28 Antigens/metabolism , Friends , T-Lymphocytes , CTLA-4 Antigen/metabolism , Immunotherapy , B7-1 Antigen/metabolism , Immunoglobulins/metabolism , Butyrophilins/metabolism , Antigens, CD/metabolism
15.
J Pharm Biomed Anal ; 242: 116034, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38422671

ABSTRACT

T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.


Subject(s)
Autoimmune Diseases , Immunoconjugates , Humans , CD28 Antigens/metabolism , Antigens, CD/metabolism , B7-2 Antigen , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , B7-1 Antigen/metabolism , Abatacept
16.
Cancer Rep (Hoboken) ; 7(2): e1996, 2024 02.
Article in English | MEDLINE | ID: mdl-38351552

ABSTRACT

BACKGROUND: Dendritic cells (DCs) play a crucial role in immunity. Research on monocyte-derived DCs (Mo-DCs) cancer vaccines is in progress despite limited success in clinical trials. This study focuses on Mo-DCs generated from prostate cancer (PCA) patients, comparing them with DCs from healthy donors (HD-DCs). METHODS: Mo-DCs were isolated from PCA patient samples, and their phenotype was compared to HD-DCs. Key parameters included monocyte count, CD14 expression, and the levels of maturation markers (HLA-DR, CD80, CD86) were assessed. RESULTS: PCA samples exhibited a significantly lower monocyte count and reduced CD14 expression compared to healthy samples (p ⟨ 0.0001). Additionally, PCA-DCs expressed significantly lower levels of maturation markers, including HLA-DR, CD80, and CD86, when compared to HD-DCs (p = 0.123, p = 0.884, and p = 0.309, respectively). CONCLUSION: The limited success of DC vaccines could be attributed to impaired phenotypic characteristics. These observations suggest that suboptimal characteristics of Mo-DCs generated from cancer patient blood samples might contribute to the limited success of DC vaccines. Consequently, this study underscores the need for alternative strategies to enhance the features of Mo-DCs for more effective cancer immunotherapies.


Subject(s)
Prostatic Neoplasms , Vaccines , Humans , Male , Monocytes/metabolism , Cell Differentiation , Dendritic Cells/metabolism , B7-1 Antigen/metabolism , HLA-DR Antigens/metabolism , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Phenotype , Vaccines/metabolism
17.
Cancer Immunol Immunother ; 73(3): 42, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349455

ABSTRACT

BACKGROUND: Alpha-2-glycoprotein 1, zinc-binding (ZAG), a secreted protein encoded by the AZGP1 gene, is structurally similar to HLA class I. Despite its presumed immunological function, little is known about its role in tumor immunity. In this study, we thus aimed to determine the relationship between the expression of AZGP1/ZAG and the immunological profiles of breast cancer tissues at both the gene and protein level. METHODS: Using a publicly available gene expression dataset from a large-scale breast cancer cohort, we conducted gene set enrichment analysis (GSEA) to screen the biological processes associated with AZGP1. We analyzed the correlation between AZGP1 expression and immune cell composition in breast cancer tissues, estimated using CIBERSORTx. Previously, we evaluated the infiltration of 11 types of immune cells for 45 breast cancer tissues using flow cytometry (FCM). ZAG expression was evaluated by immunohistochemistry on these specimens and analyzed for its relationship with immune cell infiltration. The action of ZAG in M1/M2 polarization models using primary cultures of human peripheral blood mononuclear cells (PBMC)-derived macrophage (Mφ) was analyzed based on the expression of M1/M2 markers (CD86, CD80/CD163, MRC1) and HLA class I/II by FCM. RESULTS: AZGP1 expression was negatively correlated with multiple immunological processes and specific immune cell infiltration including Mφ M1 using GSEA and CIBERSORTx. ZAG expression was associated with decreased infiltration of monocytes/macrophages, non-classical monocytes, and myeloid-derived suppressor cells in tumor tissues assessed using FCM. In in vitro analyses, ZAG decreased the expression of CD80, CD163, MRC1, and HLA classes I/II in the M1 polarization model and the expression of CD163 and MRC1 in the M2 polarization model. CONCLUSION: ZAG is suggested to be a novel immunoregulatory factor affecting the Mφ phenotype in breast cancer tissues.


Subject(s)
Breast Neoplasms , Female , Humans , B7-1 Antigen , Glycoproteins , Leukocytes, Mononuclear , Tumor Microenvironment , Zinc
18.
Clin Exp Nephrol ; 28(5): 431-439, 2024 May.
Article in English | MEDLINE | ID: mdl-38267800

ABSTRACT

INTRODUCTION: Disease subtyping and monitoring are essential for the management of nephrotic syndrome (NS). Although various biomarkers for NS have been reported, their clinical efficacy has not been comprehensively validated in adult Japanese patients. METHODS: The Japanese Biomarkers in Nephrotic Syndrome (J-MARINE) study is a nationwide, multicenter, and prospective cohort study in Japan, enrolling adult (≥18 years) patients with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), and lupus nephritis (LN). Baseline clinical information and plasma and urine samples will be collected at the time of immunosuppressive therapy initiation or biopsy. Follow-up data and plasma and urine samples will be collected longitudinally based on the designated protocols. Candidate biomarkers will be measured: CD80, cytotoxic T-lymphocyte antigen 4, and soluble urokinase plasminogen activator receptor for MCD and FSGS; anti-phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A antibodies for MN; fragment Ba, C3a, factor I, and properdin for MPGN/C3G; and CD11b, CD16b, and CD163 for LN. Outcomes include complete and partial remission, relapse of proteinuria, a 30% reduction in estimated glomerular filtration rate (eGFR), eGFR decline, and initiation of renal replacement therapy. The diagnostic accuracy and predictive ability for clinical outcomes will be assessed for each biomarker. RESULTS: From April 2019 to April 2023, 365 patients were enrolled: 145, 21, 138, 10, and 51 cases of MCD, FSGS, MN, MPGN/C3G, and LN, respectively. CONCLUSION: This study will provide valuable insights into biomarkers for NS and serve as a biorepository for future studies.


Subject(s)
B7-1 Antigen , Biomarkers , Nephrotic Syndrome , Humans , Biomarkers/blood , Biomarkers/urine , Nephrotic Syndrome/urine , Nephrotic Syndrome/blood , Nephrotic Syndrome/diagnosis , Prospective Studies , Japan , Glomerulosclerosis, Focal Segmental/urine , Glomerulosclerosis, Focal Segmental/blood , Glomerulosclerosis, Focal Segmental/diagnosis , Receptors, Urokinase Plasminogen Activator/blood , Glomerulonephritis, Membranous/urine , Glomerulonephritis, Membranous/blood , Glomerulonephritis, Membranous/diagnosis , Adult , Nephrosis, Lipoid/urine , Nephrosis, Lipoid/blood , Nephrosis, Lipoid/diagnosis , Research Design , Receptors, Phospholipase A2/immunology , Thrombospondins/blood , Glomerulonephritis, Membranoproliferative/blood , Glomerulonephritis, Membranoproliferative/urine , Glomerulonephritis, Membranoproliferative/diagnosis , Male , Female , Lupus Nephritis/blood , Lupus Nephritis/urine , Lupus Nephritis/diagnosis , East Asian People
19.
PeerJ ; 12: e16716, 2024.
Article in English | MEDLINE | ID: mdl-38188180

ABSTRACT

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Subject(s)
Flagellin , MAP Kinase Signaling System , Animals , Mice , Adaptor Proteins, Vesicular Transport/genetics , Antigen Presentation , B7-1 Antigen , Cell Proliferation , Cytokines , Flagellin/pharmacology , Glycine Dehydrogenase (Decarboxylating) , Interleukin-12 , Interleukin-4 , Intestinal Mucosa , Signal Transduction , Toll-Like Receptor 5/genetics
20.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38197898

ABSTRACT

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


Subject(s)
CD28 Antigens , Ictaluridae , Animals , Humans , CD28 Antigens/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen , Ictaluridae/genetics , Ictaluridae/metabolism , Antigens, CD , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Ligands , Cell Adhesion Molecules , Phosphatidylinositol 3-Kinases , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...