Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.595
Filter
1.
Physiol Plant ; 176(3): e14325, 2024.
Article in English | MEDLINE | ID: mdl-38715548

ABSTRACT

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Subject(s)
Bacillus , Fructans , Plant Diseases , Solanum lycopersicum , Triticum , Fructans/metabolism , Triticum/microbiology , Triticum/metabolism , Triticum/immunology , Triticum/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/immunology , Bacillus/physiology , Botrytis , Plant Immunity , Disease Resistance , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/immunology , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Seeds/growth & development , Seeds/metabolism , Seeds/microbiology , Seeds/immunology , Ascomycota
2.
BMC Biol ; 22(1): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764012

ABSTRACT

BACKGROUND: Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS: The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS: This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.


Subject(s)
Bacillus , Gossypium , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Gossypium/microbiology , Gossypium/growth & development , Ascomycota/physiology , Verticillium/physiology , Phylogeny , Biological Control Agents
3.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729251

ABSTRACT

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Subject(s)
Animal Feed , Bacillus , Diet , Dysbiosis , Enteritis , Fish Diseases , Gastrointestinal Microbiome , Glycine max , Lipopolysaccharides , Peptidoglycan , Teichoic Acids , Animals , Fish Diseases/immunology , Animal Feed/analysis , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Dysbiosis/veterinary , Dysbiosis/immunology , Bacillus/physiology , Bacillus/chemistry , Gastrointestinal Microbiome/drug effects , Diet/veterinary , Glycine max/chemistry , Lipopolysaccharides/pharmacology , Teichoic Acids/pharmacology , Peptidoglycan/pharmacology , Peptidoglycan/administration & dosage , Bass/immunology , Probiotics/pharmacology , Probiotics/administration & dosage , Dietary Supplements/analysis , Random Allocation
4.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791239

ABSTRACT

Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.


Subject(s)
Bacillus , Bacterial Proteins , Biofilms , Biofilms/growth & development , Bacillus/physiology , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Rhizosphere
5.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801423

ABSTRACT

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Subject(s)
Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38632051

ABSTRACT

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Subject(s)
Bacillus , Citrullus , Disease Resistance , Fusarium , Plant Diseases , Pseudomonas , Fusarium/growth & development , Citrullus/microbiology , Citrullus/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Bacillus/genetics , Bacillus/growth & development , Pseudomonas/growth & development , Pseudomonas/physiology , Antibiosis , Pseudomonas fluorescens/growth & development , Seedlings/growth & development , Seedlings/microbiology , Antifungal Agents/pharmacology
7.
Microb Pathog ; 191: 106645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631412

ABSTRACT

Olive knot disease, caused by Pseudomonas savastanoi, poses a significant threat to olive cultivation, necessitating sustainable alternatives to conventional chemical control. This study investigates the biocontrol effectiveness of Bacillus sp. (Og2) and Pseudomonas fluorescens (Oq5), alone and combined, against olive knot disease. Olive plants were sprayed with 5 ml of the bacteria until uniformly wet, with additional application to the soil surface. Pathogen injection occurred 24 h later. The results revealed that treating plants with a combination of both bacteria provided the highest reduction in disease severity (89.58 %), followed by P. fluorescens alone (69.38 %). Significant improvements were observed in shoot height, particularly with the combination of Bacillus sp. and P. fluorescens. The root length of olive seedlings treated with P. fluorescens and Bacillus sp., either alone or in combination, was significantly longer compared to the control and pathogen-treated seedlings. In terms of root dry weight, the most effective treatments were treated with P. fluorescens was the highest (82.94 g) among all treatments followed by the combination of both isolates with seedlings inoculated with P. savastanoi. These findings underscore the potential of Bacillus sp. and Pseudomonas fluorescens as effective biocontrol agents against olive knot disease and promoting olive seedlings growth, providing a sustainable and environmentally friendly approach to disease management.


Subject(s)
Bacillus , Biological Control Agents , Olea , Plant Diseases , Pseudomonas fluorescens , Seedlings , Olea/microbiology , Pseudomonas fluorescens/physiology , Bacillus/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Seedlings/microbiology , Seedlings/growth & development , Plant Roots/microbiology , Antibiosis
8.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38647379

ABSTRACT

This study evaluated the effects of maternal supplementation of a Bacillus-based direct-fed microbial (DFM) on the physiology and growth performance of Bos indicus-influenced cow-calf pairs. On day 0 (~139 d before expected calving date), 72 fall-calving, Brangus crossbred beef heifers (20 to 22 mo of age) pregnant with first offspring were stratified by their initial body weight (BW; 431 ±â€…31 kg) and body condition score (BCS; 6.0 ±â€…0.36; scale 1 to 9), and randomly allocated into 1 of 12 bahiagrass pastures (1 ha and six heifers per pasture). Treatments were randomly assigned to pastures (six pastures per treatment) and consisted of heifers supplemented with 1 kg/d of soybean hulls (dry matter, DM) that was added (BAC) or not (CON) with DFM containing Bacillus subtilis and B. licheniformis (Bovacillus; Chr. Hansen A/S, Hørsholm, Denmark). Treatments were provided from days 0 to 242 (139 ±â€…4 d prepartum to 104 ±â€…4 d postpartum). Calves were weaned on day 242 (96 ±â€…30 d of age) and then allocated into 1 of 16 drylot pens and fed the same concentrate at 3.25% of BW (DM) until day 319. Maternal treatment effects were not detected (P ≥ 0.29) for herbage allowance and forage chemical composition. Heifer BCS on days 39 and 63 tended (P ≤ 0.09) to be greater for BAC vs. CON heifers, whereas heifer BCS on day 91 was greater (P = 0.01) for BAC vs. CON heifers. Heifer BCS did not differ (P ≥ 0.20) between treatments on days 179 and 242. Plasma glucose concentration did not differ from days 0 to 63 (P ≥ 0.14) but were greater (P < 0.01) on day 179 and tended (P = 0.09) to be greater on day 242 for BAC vs. CON heifers. Calf BW at birth, ADG from birth to weaning, and BW at weaning did not differ (P ≥ 0.19) between treatments, but calf BW at drylot exit (day 319) was greater (P = 0.05) for BAC vs. CON calves. Maternal treatment effects were not detected (P ≥ 0.42) for calf serum concentration of IgG at birth and postvaccination plasma concentrations of glucose, cortisol, and haptoglobin. Serum titers against bovine respiratory syncytial virus (BRSV) were greater (P = 0.04) for BAC vs. CON calves on day 287, whereas seroconversion against parainfluenza-3 virus (PI-3) was greater (P < 0.01) for BAC vs. CON calves on day 271. Thus, maternal supplementation of a Bacillus-based DFM increased prepartum BCS gain and postpartum plasma glucose concentration of heifers and led to positive carryover effects on postweaning BW gain and humoral immune response in their offspring.


Direct-fed microbials (DFM), such as Bacillus spp., have been shown to produce a wide variety of enzymes related to nutrient digestion and to support gastrointestinal tract immune function and integrity, leading to increased nutrient digestibility and cattle performance. Nutritional management of beef cows during gestation and early lactation has been associated with enhanced future offspring growth performance and immune response following birth. The present study combined the use of Bacillus-based DFM for pregnant heifers during critical production stages (late gestation and early lactation) to promote the overall performance of heifers and their offspring. Heifers offered Bacillus-based DFM had greater body condition score at calving and postpartum plasma concentration of glucose, whereas their offspring had similar body weight at birth, but greater growth performance when fed relatively high amounts of protein and energy in drylot compared to cohorts born from heifers that did not receive Bacillus-based DFM supplementation.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Dietary Supplements , Animals , Cattle/growth & development , Cattle/physiology , Female , Animal Feed/analysis , Diet/veterinary , Pregnancy , Dietary Supplements/analysis , Postpartum Period , Bacillus licheniformis , Bacillus subtilis , Probiotics/administration & dosage , Probiotics/pharmacology , Random Allocation , Bacillus/physiology
9.
Plant Biol (Stuttg) ; 26(4): 592-601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682466

ABSTRACT

This study evaluates cellular damage, metabolite profiling, and defence-related gene expression in tomato plants and soil microflora during Fusarium wilt disease after treatment with B. tequilensis PBE-1. Histochemical analysis showed that PBE-1 was the primary line of defence through lignin deposition and reduced cell damage. GC-MS revealed that PBE-1 treatment ameliorated stress caused by F. oxysporum infection. PBE-1 also improved transpiration, photosynthesis, and stomatal conductance in tomato. qRT-PCR suggested that the defence-related genes FLS2, SERK, NOS, WRKYT, NHO, SAUR, and MYC2, which spread infection, were highly upregulated during F. oxysporum infection, but either downregulated or expressed normally in PBE-1 + P treated plants. This indicates that the plant not only perceives the bio-control agent as a non-pathogen entity but its presence in normal metabolism and gene expression within the host plant is maintained. The study further corroborated findings that application of PBE-1 does not cause ecological disturbances in the rhizosphere. Activity of soil microflora across four treatments, measured by Average Well Colour Development (AWCD), showed continuous increases from weeks 1 to 4 post-pathogen infection, with distinct substrate usage patterns like tannic and fumaric acids impacting microbial energy source utilization and diversity. Principal Component Analysis (PCA) and diversity indices like McIntosh, Shannon, and Simpson further illustrated significant microbial community shifts over the study period. In conclusion, our findings demonstrate that B. tequilensis PBE-1 is an ideal bio-agent for field application during Fusarium wilt disease management in tomato.


Subject(s)
Bacillus , Fusarium , Plant Diseases , Soil Microbiology , Solanum lycopersicum , Fusarium/physiology , Fusarium/pathogenicity , Solanum lycopersicum/microbiology , Solanum lycopersicum/metabolism , Plant Diseases/microbiology , Bacillus/physiology , Bacillus/metabolism , Gene Expression Regulation, Plant , Rhizosphere , Photosynthesis
10.
Arch Anim Nutr ; 78(1): 1-15, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303140

ABSTRACT

This study examined the effects of a 3-strain Bacillus-based probiotic (BP; Bacillus amyloliquefaciens and two Bacillus subtilis) in broiler diets with different rye levels on performance, mucus, viscosity, and nutrient digestibility. We distributed 720 one-d-old female broilers into 72 pens and designed nine diets using a 3 × 3 factorial approach, varying BP levels (0, 1.2 × 106, and 1.2 × 107 CFU/g) and rye concentrations (0, 200, 400 g/kg). On d 35, diets with 200 or 400 g/kg rye reduced broiler weight gain (BWG). Diets with 400 g/kg rye had the highest FCR, while rye-free diets had the lowest (p ≤0.05). Adding BP increased feed intake and BWG in weeks two and three (p ≤0.05). It should be noted that the overall performance fell below the goals of the breed. Including rye in diets reduced the coefficient of apparent ileal digestibility (CAID) for protein, ether extract (EE), calcium, phosphorus, and all amino acids (p ≤0.05). Rye-free diets exhibited the highest CAID for all nutrients, except for methionine, EE, and calcium, while diets with 400 g/kg of rye demonstrated the lowest CAID (p ≤0.05). BP in diets decreased phosphorus CAID (p ≤0.05). Diets containing 1.2 × 107 CFU/g (10X) of BP exhibited higher CAID of methionine than the other two diets (p ≤0.05). Diets containing 10X of BP showed higher CAID of cysteine than diets with no BP (p ≤0.05). Ileal viscosity increased as the inclusion level of rye in the diets increased (p ≤0.05). The ileal concentration of glucosamine in chickens fed diets with 400 g/kg of rye was higher than in those fed diets with no rye (p ≤0.05). Furthermore, ileal galactosamine concentrations were elevated in diets with 200 and 400 g/kg of rye when compared to rye-free diets (p ≤0.05). However, BP in diets had no impact on ileal viscosity, galactosamine, or glucosamine (p > 0.05). In conclusion, the applied Bacillus strains appeared to have a limited capacity to produce arabinoxylan-degrading enzymes and were only partially effective in mitigating the negative impacts of rye arabinoxylans on broilers.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Probiotics , Animals , Chickens/physiology , Probiotics/administration & dosage , Probiotics/pharmacology , Animal Feed/analysis , Female , Diet/veterinary , Digestion/drug effects , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Polysaccharides/metabolism , Bacillus subtilis/chemistry , Bacillus amyloliquefaciens/physiology , Bacillus amyloliquefaciens/chemistry , Random Allocation , Secale/chemistry , Bacillus/physiology , Bacillus/chemistry
11.
Biotechnol Adv ; 70: 108303, 2024.
Article in English | MEDLINE | ID: mdl-38128850

ABSTRACT

Soil salinity is one of the most important abiotic factors that affects agricultural production worldwide. Because of saline stress, plants face physiological changes that have negative impacts on the various stages of their development, so the employment of plant growth-promoting bacteria (PGPB) is one effective means to reduce such toxic effects. Bacteria of the Bacillus genus are excellent PGPB and have been extensively studied, but what traits makes them so extraordinary to adapt and survive under harsh situations? In this work we review the Bacillus' innate abilities to survive in saline stressful soils, such as the production osmoprotectant compounds, antioxidant enzymes, exopolysaccharides, and the modification of their membrane lipids. Other survival abilities are also discussed, such as sporulation or a reduced growth state under the scope of a functional interaction in the rhizosphere. Thus, the most recent evidence shows that these saline adaptive activities are important in plant-associated bacteria to potentially protect, direct and indirect plant growth-stimulating activities. Additionally, recent advances on the mechanisms used by Bacillus spp. to improve the growth of plants under saline stress are addressed, including genomic and transcriptomic explorations. Finally, characterization and selection of Bacillus strains with efficient survival strategies are key factors in ameliorating saline problems in agricultural production.


Subject(s)
Bacillus , Bacillus/physiology , Soil , Plant Roots/microbiology , Bacteria/genetics , Antioxidants
12.
Plant Physiol Biochem ; 203: 108063, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37827044

ABSTRACT

Alkaline stress is a major environmental challenge that restricts plant growth and agricultural productivity worldwide. Plant growth-promoting rhizobacteria (PGPR) can be used to effectively enhance plant abiotic stress in an environment-friendly manner. However, PGPR that can enhance alkalinity tolerance are not well-studied and the mechanisms by which they exert beneficial effects remain elusive. In this study, we isolated Jrh14-10 from the rhizosphere soil of halophyte Halerpestes cymbalaria (Pursh) Green and found that it can produce indole-3-acetic acid (IAA) and siderophore. By 16S rRNA gene sequencing, it was classified as Bacillus licheniformis. Inoculation Arabidopsis seedlings with Jrh14-10 significantly increased the total fresh weight (by 148.1%), primary root elongation (by 1121.7%), and lateral root number (by 108.8%) under alkaline stress. RNA-Seq analysis showed that 3389 genes were up-regulated by inoculation under alkaline stress and they were associated with sulfur metabolism, photosynthetic system, and oxidative stress response. Significantly, the levels of Cys and GSH were increased by 144.3% and 48.7%, respectively, in the inoculation group compared to the control under alkaline stress. Furthermore, Jrh14-10 markedly enhanced the activities of antioxidant enzymes, resulting in lower levels of O2•-, H2O2, and MDA as well as higher levels of Fv/Fm in alkaline-treated seedlings. In summary, Jrh14-10 can improve alkaline stress resistance in seedlings which was accompanied by an increase in sulfur metabolism-mediated GSH synthesis and antioxidant enzyme activities. These results provide a mechanistic understanding of the interactions between a beneficial bacterial strain and plants under alkaline stress.


Subject(s)
Bacillus , Bacillus/physiology , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , RNA, Ribosomal, 16S/genetics , Seedlings/metabolism , Sulfur/metabolism , Plant Roots/metabolism
13.
Mol Biol (Mosk) ; 57(4): 609-622, 2023.
Article in Russian | MEDLINE | ID: mdl-37528781

ABSTRACT

Bacillus cereus is a spore-forming bacterium found in the environment mainly in soil. Bacillus spores are known to be extremely resistant not only to environmental factors, but also to various sanitation regimes. This leads to spore contamination of toxin-producing strains in hospital and food equipment and, therefore, poses a great threat to human health. Two clinical isolates identified as B. cereus and B. cytotoxicus were used in the present work. It was shown that their calcium ion content was significantly lower than that of the reference strains. According to electron microscopy, one of the SRCC 19/16 isolates has an enlarged exosporium, and the SRCC 1208 isolate has large electron-dense inclusions of an unclear nature during sporulation. We can assume that these contain a biologically active component with a cytotoxic effect and possibly play a role in pathogenesis. Comparative chemical, biochemical, physiological, and ultrastructural analysis of spores of clinical isolates and reference strains of B. cereus was performed. The results we obtained deepen our understanding of the properties of spores that contribute to the increased pathogenicity of B. cereus group species.


Subject(s)
Bacillus , Humans , Bacillus/physiology , Bacillus cereus/physiology , Spores, Bacterial/chemistry , Spores, Bacterial/physiology , Spores, Bacterial/ultrastructure , Microscopy, Electron , Mass Spectrometry
14.
Sci Total Environ ; 886: 163952, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37164076

ABSTRACT

Earth's near space is an extreme atmosphere environment with high levels of radiation, low atmospheric pressure and dramatic temperature fluctuations. The region is above the flight altitude of aircraft but below the orbit of satellites, which has special and Mars-like conditions for investigating the survival and evolution of life. Technical limitations including flight devices, payloads and technologies/methodologies hinder microbiological research in near space. In this study, we investigated microbial survival and adaptive strategies in near space using a scientific balloon fight mission and multi-omics analyses. Methods for sample preparation, storage, protector and vessel were optimized to prepare the exposed microbial samples. After 3 h 17 min of exposure at a float altitude of ~32 km, only Bacillus strains were alive with survival efficiencies of 0-10-6. Diverse mutants with significantly altered metabolites were generated, firstly proving that Earth's near space could be used as a new powerful microbial breeding platform. Multi-omics analyses of mutants revealed cascade changes at the genome, transcriptome and proteome levels. In response to environmental stresses, two mutants had similar proteome changes caused by different genomic mutations and mRNA expression levels. Metabolic network analysis combined with proteins' expression levels revealed that metabolic fluxes of EMP, PPP and purine synthesis-related pathways were significantly altered to increase/decrease inosine production. Further analysis showed that proteins related to translation, molecular chaperones, cell wall/membrane, sporulation, DNA replication/repair and anti-oxidation were significantly upregulated, enabling cells to efficiently repair DNA/protein damages and improve viability against environmental stress. Overall, these results revealed genetic and metabolic responses of Bacillus to the harsh conditions in near space, providing a research basis for bacterial adaptive mechanisms in extreme environments.


Subject(s)
Bacillus , Bacillus/physiology , Proteome , Bacteria , Atmosphere , Extreme Environments
15.
Sci Total Environ ; 878: 163175, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37003329

ABSTRACT

Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.


Subject(s)
Bacillus , Oryza , Selenium , Bacillus/physiology , Exudates and Transudates , Soil , Plant Roots/microbiology
16.
Elife ; 122023 04 25.
Article in English | MEDLINE | ID: mdl-37096874

ABSTRACT

Division of labor, where subpopulations perform complementary tasks simultaneously within an assembly, characterizes major evolutionary transitions of cooperation in certain cases. Currently, the mechanism and significance of mediating the interaction between different cell types during the division of labor, remain largely unknown. Here, we investigated the molecular mechanism and ecological function of a policing system for optimizing the division of labor in Bacillus velezensis SQR9. During biofilm formation, cells differentiated into the extracellular matrix (ECM)-producers and cheater-like nonproducers. ECM-producers were also active in the biosynthesis of genomic island-governed toxic bacillunoic acids (BAs) and self-resistance; while the nonproducers were sensitive to this antibiotic and could be partially eliminated. Spo0A was identified to be the co-regulator for triggering both ECM production and BAs synthesis/immunity. Besides its well-known regulation of ECM secretion, Spo0A activates acetyl-CoA carboxylase to produce malonyl-CoA, which is essential for BAs biosynthesis, thereby stimulating BAs production and self-immunity. Finally, the policing system not only excluded ECM-nonproducing cheater-like individuals but also improved the production of other public goods such as protease and siderophore, consequently, enhancing the population stability and ecological fitness under stress conditions and in the rhizosphere. This study provides insights into our understanding of the maintenance and evolution of microbial cooperation.


Subject(s)
Bacillus , Bacillus/metabolism , Bacillus/physiology
17.
Int. j. morphol ; 41(1): 286-296, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430539

ABSTRACT

SUMMARY: Cancer is the second leading cause of death in the world and colorectal cancer is the only cancer that has shown a sustained increase in mortality in the last decade. In the search for new chemotherapeutic agents against cancer, extremophilic microorganisms have shown to be a potential source to obtain molecules of natural origin and with selective cytotoxic action towards cancer cells. In this work we analyzed the ability of a collection of Antarctic soil bacteria, isolated on Collins Glacier from the rhizosphere of Deschampsia antarctica Desv plant, to secrete molecules capable of inhibiting cell proliferation of a colorectal cancer tumor line. Our results demonstrated that culture supernatants from the Antarctic bacteria K2I17 and MI12 decreased the viability of LoVo cells, a colorectal adenocarcinoma cell line. Phenotypic and genotypic characterization of the Antarctic bacteria showed that they were taxonomically related and nucleotide identity analysis based on the 16S rRNA gene sequence identified the bacterium K2I17 as a species belonging to the genus Bacillus.


El cáncer es la segunda causa de muerte en el mundo y el cáncer colorrectal es el único que presenta un aumento sostenido de la mortalidad en la última década. En la búsqueda de nuevos agentes quimioterapeúticos contra el cáncer, se ha propuesto a los microorganismos extremófilos como una fuente potencial para obtener moléculas de origen natural y con acción citotóxica selectiva hacia las células cancerígenas. En este trabajo analizamos la capacidad de una colección de bacterias de suelo antártico, aisladas en el glaciar Collins desde rizosfera de la planta de Deschampsia antarctica Desv, de secretar moléculas capaces de inhibir la proliferación celular de una línea tumoral de cáncer colorrectal. Nuestros resultados demostraron que los sobrenadantes de cultivo de las bacterias antárticas K2I17 y MI12 disminuyeron la viabilidad de la línea celular de adenocarcinoma colorrectal LoVo, en un ensayo de reducción metabólica de MTT. La caracterización fenotípica y genotípica de las bacterias antárticas, demostró que estaban relacionadas taxonómicamente y el análisis de la identidad nucleotídica en base a la secuencia del gen ARNr 16S identificó a la bacteria K2I17 como una especie perteneciente al género Bacillus.


Subject(s)
Humans , Soil Microbiology , Bacillus/physiology , Colorectal Neoplasms/drug therapy , Cell Proliferation/drug effects , Phenotype , Bacillus/isolation & purification , Bacillus/genetics , In Vitro Techniques , RNA, Ribosomal, 16S , Adenocarcinoma/drug therapy , Cell Survival/drug effects , Polymerase Chain Reaction , Cell Line, Tumor/drug effects , Genotype , Antarctic Regions
18.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626730

ABSTRACT

AIMS: To provide valuable information for a comprehensive understanding of the multicellular behavior of Bacillus velezensis Bs916 regulated by surfactin and other natural signals by Transcriptome. METHODS AND RESULTS: Transcriptomics revealed a distinct effect on gene expression alterations caused by disruption of the surfactin gene cluster(Δsrf) and 100 µg/ml surfactin addition(Δsrf + SRF). A total of 1573 differential expression genes were identified among Bs916, Δsrf, and Δsrf + SRF and grouped into eight categories based on their expression profiles. RT-qPCR analysis of 30 candidate genes showed high consistency with those of transcriptome. Additionally, the expression of eight candidate genes regulated by surfactin in a dose-dependent manner was revealed by lacZ fusion. Based on the above evidence, we proposed that surfactin can act as an extracellular signal for monitoring biofilm formation in Bs916 by directly regulating the expression of AbrB, DegS-degU, and SinI-SinR, and indirectly regulating the phosphorylation of ComA and Spo0A. CONCLUSIONS: The biofilm of Δsrf was unable to restore significantly by surfactin addition, combined inclusion of surfactin (SRF), exopolysaccharide (EPS), and γ-poly-dl-glutamic acid (γ-PGA), results in significant restoration of Δsrf biofilm formation, thereby a preliminary model was presented about the molecular mechanism by which the signaling molecule surfactin regulates Bs916 multicellular behavior.


Subject(s)
Bacillus , Transcriptome , Bacillus/physiology , Gene Expression Profiling , Multigene Family , Biofilms , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Lipopeptides/pharmacology , Lipopeptides/metabolism
19.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626796

ABSTRACT

AIMS: Tobacco (Nicotiana tabacum) is an economically important crop. Root rot caused by Fusarium oxysporum has become a damaging disease in N. tabacum crops grown in Henan province of China. Therefore, the objectives of this study were to screen bacterial isolates against F. oxysporum from rhizosphere soils of tobacco growing areas and to evaluate their antifungal activities, biocontrol effects, and effects on plant growth. METHODS AND RESULTS: Nineteen strains with antifungal inhibition effects of >60% against F. oxysporum were obtained using the method of flat confrontation; the strain Ba-0321 was the strongest, with an antifungal effect of 75%. Moreover, this strain had broad spectrum antimicrobial activity to eight additional tobacco pathogens. The strain was identified as Bacillus velezensis by morphology and the 16S rDNA sequence. The B. velezensis strain Ba-0321 had strong UV resistance as well as tolerance to high temperatures and low nutrition. The bacteria inhibited spore germination and mycelial growth of F. oxysporum under in vitro co-culture conditions. In vivo assays demonstrated that the Ba-0321 strain significantly reduced the pathogenicity of F. oxysporum, resulting in a control effect on tobacco root rot of 81.00%. Simultaneously, the bacteria significantly promoted root development and the growth of tobacco plants. CONCLUSION: Our results confirmed that the B. velezensis strain Ba-0321 has a strong antifungal effect and stress resistance that enable it to be used as a biological control agent for tobacco root rot caused by F. oxysporum. SIGNIFICANCE AND IMPACT OF THE STUDY: Tobacco root rot caused by F. oxysporum has become a damaging disease in China. The B. velezensis strain Ba-0321 has promising application value for controlling tobacco root rot diseases, and it could provide a new biocontrol agent against root rot caused by F. oxysporum in other plant species.


Subject(s)
Bacillus , Fusarium , Antifungal Agents/pharmacology , Nicotiana , Bacillus/physiology , Bacteria , Plant Diseases/prevention & control , Plant Diseases/microbiology
20.
Int J Food Microbiol ; 385: 109995, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36368058

ABSTRACT

Temperature plays a critical role in the performance of microbial communities during traditional solid-state fermentation. However, it remains unknown how temperature shapes microbiota, metabolism, and their relationship in Daqu fermentation. Here, we investigated the response of Daqu microbiota and metabolites to temperature by actual Daqu fermentation and simulated fermentation. First, volatile organic compounds were similar in both fermentation systems. Seventy-nine shared volatile compounds accounted for 94.5 %-96.5 % in Daqu fermentation and 66 %-95.6 % in the end of simulated fermentation, indicating that the formation of compounds in Daqu fermentation could be repeated effectively by simulated fermentation. The simulated fermentation showed the temperature gradient of 17 °C-60 °C significantly affected the formation and accumulation of volatile compounds. Aldehydes, acids, and pyrazines positively correlated with temperature (p < 0.05). Eight compounds were identified as characteristic compounds in high temperature (50-60 °C), including tetramethylpyrazine, trimethylpyrazine, 2,3-dimethyl-5-ethylpyrazine, 3-hydroxy-2-butanone, 2,3-dimethylpyrazine, benzaldehyde, acetic acid, and isovaleric acid. Next, we explored the force of temperature on microbial assembly and microbial interaction in simulated fermentation. Temperature significantly affected the composition of bacterial community (ANOISM, R = 0.779, P = 0.001) and fungi community (ANOISM, R = 0.664, P = 0.001). At the genus level, Weissella, Lactobacillus, Pediococcus, Saccharomycopsis Saccharomyces and Monascus dominated in 17-40 °C while Bacillus, Kroppenstedtia, Oceanobacillus, Lentibacillus, Rasamsonia, Thermoascus, Candida and Aspergillus were predominant genera in 50-60 °C. The succession of Bacillales, Lactobacillales, Eurotiales and Saccharomycetales adapted to changes in temperature. High temperature promoted microbial network complexity and a significant variation in microbial interactions. Furthermore, Procrustes analysis revealed a significant correlation between microbial community and volatile compounds (M2 = 0.6035, P < 0.001). Bacillus, Lentibacillus, Kroppenstedtia, and Oceanobacillus were significant contributors correlated to characteristic compounds. This study revealed the temperature-driven Daqu microbiota functioned as a critical contributor to promoting flavor formation and provided the theoretical basis for regulating fermentation in spontaneous fermentation systems.


Subject(s)
Bacillus , Lactobacillales , Microbiota , Temperature , Microbiota/physiology , Bacteria , Fermentation , Lactobacillales/metabolism , Bacillus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...