Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 610
Filter
1.
Sci Total Environ ; 933: 173079, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735331

ABSTRACT

Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.


Subject(s)
Bacillus cereus , Inflammation , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Signal Transduction , Bacillus cereus/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , NF-kappa B/metabolism , Animals , Caco-2 Cells , Humans , Colon , Enterotoxins/toxicity
2.
Int J Food Microbiol ; 418: 110709, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38663147

ABSTRACT

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.


Subject(s)
Bacillus cereus , Hot Temperature , Spores, Bacterial , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Bacillus cereus/genetics , Bacillus cereus/growth & development , Bacillus cereus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Thermotolerance , Adaptation, Physiological , Whole Genome Sequencing , Food Microbiology , Genome, Bacterial , Biological Evolution
3.
Mol Biol (Mosk) ; 57(4): 609-622, 2023.
Article in Russian | MEDLINE | ID: mdl-37528781

ABSTRACT

Bacillus cereus is a spore-forming bacterium found in the environment mainly in soil. Bacillus spores are known to be extremely resistant not only to environmental factors, but also to various sanitation regimes. This leads to spore contamination of toxin-producing strains in hospital and food equipment and, therefore, poses a great threat to human health. Two clinical isolates identified as B. cereus and B. cytotoxicus were used in the present work. It was shown that their calcium ion content was significantly lower than that of the reference strains. According to electron microscopy, one of the SRCC 19/16 isolates has an enlarged exosporium, and the SRCC 1208 isolate has large electron-dense inclusions of an unclear nature during sporulation. We can assume that these contain a biologically active component with a cytotoxic effect and possibly play a role in pathogenesis. Comparative chemical, biochemical, physiological, and ultrastructural analysis of spores of clinical isolates and reference strains of B. cereus was performed. The results we obtained deepen our understanding of the properties of spores that contribute to the increased pathogenicity of B. cereus group species.


Subject(s)
Bacillus , Humans , Bacillus/physiology , Bacillus cereus/physiology , Spores, Bacterial/chemistry , Spores, Bacterial/physiology , Spores, Bacterial/ultrastructure , Microscopy, Electron , Mass Spectrometry
4.
Food Res Int ; 169: 112867, 2023 07.
Article in English | MEDLINE | ID: mdl-37254316

ABSTRACT

Bacillus cereus spore is one of the most easily contaminated bacterial spores in low-water activity foods such as black pepper. Atmospheric-pressure plasma jet (APPJ) has emerged as an emerging and promising method for microbial inactivation in food processing. This study aimed to investigate the efficacy of APPJ in inactivating spores under various treatment parameters and to examine the resulting alterations in spore structures and internal membrane properties. Meanwhile, the practical application of APPJ for spore inactivation in black pepper was also evaluated. The results indicated that air-APPJ had superior spore inactivation capability compared to N2 and O2-APPJ. After 20 min of APPJ treatment (50 L/min, 800 W, and 10 cm), the reduction in spore count (>2 log CFU/g) was significantly greater than that achieved by heat treatment (80℃). The damage of inner membranes was considered as the major reason of the dried spore inactivation by APPJ treatment. Moreover, it achieved a reduction in spore count of > 1 log CFU/g on inoculated black pepper without significantly affecting its color and flavor. Although the antioxidant activity of black pepper was slightly reduced, the overall quality of the product was not considerably affected by plasma treatment. This study concluded that APPJ is an effective technique for spore inactivation, offering promising potential for application in the decontamination of low-water activity foods.


Subject(s)
Bacillus cereus , Water , Bacillus cereus/physiology , Colony Count, Microbial , Spores, Bacterial , Atmospheric Pressure
5.
Int J Food Microbiol ; 387: 110045, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36549087

ABSTRACT

Meta-regression models have gained in popularity during the last years as a way to create more generic models for Microbial Risk Assessments that also include variability. However, as with most meta-analyses and empirical models, systematic biases in the data can result in inaccurate models. In this article, we define experimental bias as a type of selection bias due to the practical limitations of microbial inactivation experiments. Conditions with extremely high D-values (i.e. slow inactivation) need very long experimental runs to cause significant reductions. On the other hand, when the D-value is extremely low, not enough data points can be gathered before the microbial population is below the detection limit. Consequently, experimental designs favour conditions within a practical experimental range, introducing a selection bias in the D-values. We demonstrate the impact of experimental bias in meta-regression models using numerical simulations. Models fitted to data with experimental bias overestimated the z-value and underestimated variability. We propose a rapid heuristic method to identify experimental bias in datasets, and we propose truncated regression to mitigate its impact in meta-regression models. Both methods were validated using simulated data. Thereafter the procedures were tested by building a meta-regression model for actual data for the inactivation of Bacillus cereus spores. We concluded that the dataset included experimental bias, and that it would cause an overestimation of the microbial resistance at high temperatures (>120 °C) for classical meta-regression models. This effect was mitigated when the model was built using truncated regression. In conclusion, we demonstrate that experimental bias could potentially result in inaccurate models for predictive microbiology. Therefore, checking for experimental bias should be a routine step in meta-regression modelling, and be included in guidelines on data analysis for meta-regression.


Subject(s)
Bias , Bacillus cereus/physiology , Food Microbiology , Hot Temperature , Microbial Viability
6.
Int J Food Microbiol ; 368: 109607, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35276493

ABSTRACT

The objective of this work is to match available phylogenetic information for Bacillus cereus strains with published thermal resistance parameters (D90°C, z) and to use this information to develop refined inactivation models for B. cereus sensu lato. To do so, the thermal resistance parameters were retrieved for 57 strains of B. cereus that could be assigned to a phylogenetic group. This information was used to build specific distributions for D90°C and z for the different phylogenetic groups of B. cereus to build refined thermal inactivation models for B. cereus. For validation purposes, thermal parameters were also retrieved for additional strains of unknown groups, but which had been classified as psychrotrophic or mesophilic. Monte Carlo simulations were first performed assuming that the model parameters D90°C and z are independent. However, based on the observation that combinations of very high D90°C and high z-values were not reported, an alternative Monte Carlo simulation set was explored for the phylogenetic Groups with very high z-values (i.e.i.e. Groups IV and VI). With both simulation sets, the predicted lower and upper limits of the D-values are close to the lowest and highest D-values reported in two previous meta-analysis studies. However, a better correspondence between the predicted and observed limits is obtained when using the alternative simulation set.


Subject(s)
Bacillus cereus , Microbial Viability , Models, Biological , Spores, Bacterial , Bacillus cereus/physiology , Computer Simulation , Hot Temperature , Phylogeny
7.
J Appl Microbiol ; 132(1): 470-482, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34137137

ABSTRACT

AIM: The genus Fusarium comprises plant pathogenic species with agricultural relevance. Fusarium oxysporum causes tomato wilt disease with significant production losses. The use of agrochemicals to control the Fusarium wilt of tomato is not environmentally friendly. Bacillus species, as biocontrol agents, provide a safe and sustainable means to control Fusarium-induced plant diseases. In this study, the ability of Bacillus cereus MH778713, a strain isolated from root nodules of Prosopis laevigata, to protect tomato plants against Fusarium wilt was evaluated. METHODS AND RESULTS: Bacillus cereus MH778713 and its volatiles inhibited the radial growth of F. oxysporum and stimulated tomato seedling growth in in vitro and in vivo tests. When tomato plants growing in the greenhouse were inoculated with B. cereus MH778713, the percentage of wilted plants decreased from 96% to 12%, indicating an effective crop protection against Fusarium wilt. Among the metabolites produced by B. cereus MH778713, hentriacontane and 2,4-di-tert-butylphenol promoted tomato seedling growth and showed antifungal activity against the target pathogen. CONCLUSION: The inoculation of B. cereus MH778713 on tomato seedlings helped plants to manage Fusarium wilt, suggesting the potential of B. cereus MH778713 as a biocontrol agent. SIGNIFICANCE AND IMPACT OF THE STUDY: These results complement our previous studies on chromium tolerance and bioremediation traits of B. cereus MH778713 by highlighting the potential of this metal-resistant micro-organism to boost crop growth and disease resistance.


Subject(s)
Bacillus cereus/physiology , Biological Control Agents , Fusarium , Plant Diseases/prevention & control , Solanum lycopersicum , Fusarium/pathogenicity , Solanum lycopersicum/microbiology , Plant Diseases/microbiology
8.
Microbiologyopen ; 10(6): e1254, 2021 11.
Article in English | MEDLINE | ID: mdl-34964290

ABSTRACT

Interspecific interactions within biofilms determine relative species abundance, growth dynamics, community resilience, and success or failure of invasion by an extraneous organism. However, deciphering interspecific interactions and assessing their contribution to biofilm properties and function remain a challenge. Here, we describe the constitution of a model biofilm composed of four bacterial species belonging to four different genera (Rhodocyclus sp., Pseudomonas fluorescens, Kocuria varians, and Bacillus cereus), derived from a biofilm isolated from an industrial milk pasteurization unit. We demonstrate that the growth dynamics and equilibrium composition of this biofilm are highly reproducible. Based on its equilibrium composition, we show that the establishment of this four-species biofilm is highly robust against initial, transient perturbations but less so towards continuous perturbations. By comparing biofilms formed from different numbers and combinations of the constituent species and by fitting a growth model to the experimental data, we reveal a network of dynamic, positive, and negative interactions that determine the final composition of the biofilm. Furthermore, we reveal that the molecular determinant of one negative interaction is the thiocillin I synthesized by the B. cereus strain, and demonstrate its importance for species distribution and its impact on robustness by mutational analysis of the biofilm ecosystem.


Subject(s)
Biofilms/growth & development , Microbial Interactions , Microbiota , Bacillus cereus/physiology , Ecosystem , Micrococcaceae/physiology , Peptides/metabolism , Plankton/physiology , Pseudomonas fluorescens/physiology , Rhodocyclaceae/physiology
9.
Food Funct ; 12(21): 10903-10916, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34647113

ABSTRACT

The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.


Subject(s)
Bacillus cereus/physiology , Chickens , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Probiotics/pharmacology , Viral Vaccines/immunology , Animal Feed/analysis , Animals , Dietary Supplements
10.
Virulence ; 12(1): 2104-2121, 2021 12.
Article in English | MEDLINE | ID: mdl-34374318

ABSTRACT

Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.


Subject(s)
Bacillus cereus , Iron/metabolism , Moths , Animals , Bacillus cereus/genetics , Bacillus cereus/physiology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Homeostasis , Larva , Laser Capture Microdissection , Moths/microbiology , RNA, Messenger , Reproducibility of Results
11.
Appl Environ Microbiol ; 87(15): e0046821, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34020940

ABSTRACT

The common cooccurrence of antibiotics and phages in both natural and engineered environments underscores the need to understand their interactions and implications for bacterial control and antibiotic resistance propagation. Here, aminoglycoside antibiotics that inhibit protein synthesis (e.g., kanamycin and neomycin) impeded the replication of coliphage T3 and Bacillus phage BSP, reducing their infection efficiency and mitigating their hindrance of bacterial growth, biofilm formation, and tolerance to antibiotics. For example, treatment with phage T3 reduced subsequent biofilm formation by Escherichia coli liquid cultures to 53% ± 5% of that of the no-phage control, but a smaller reduction of biofilm formation (89% ± 10%) was observed for combined exposure to phage T3 and kanamycin. Despite sharing a similar mode of action with aminoglycosides (i.e., inhibiting protein synthesis) and antagonizing phage replication, albeit to a lesser degree, tetracyclines did not inhibit bacterial control by phages. Phage T3 combined with tetracycline showed higher suppression of biofilm formation than when combined with aminoglycosides (25% ± 6% of the no-phage control). The addition of phage T3 to E. coli suspensions with tetracycline also suppressed the development of tolerance to tetracycline. However, this suppression of antibiotic tolerance development disappeared when tetracycline was replaced with 3 mg/liter kanamycin, corroborating the greater antagonism with aminoglycosides. Overall, this study highlights this overlooked antagonistic effect on phage proliferation, which may attenuate phage suppression of bacterial growth, biofilm formation, antibiotic tolerance, and maintenance of antibiotic resistance genes. IMPORTANCE The coexistence of residual antibiotics and phages is common in many environments, which underscores the need to understand their interactive effects on bacteria and the implications for antibiotic resistance propagation. Here, aminoglycosides acting as bacterial protein synthesis inhibitors impeded the replication of various phages. This alleviated the suppressive effects of phages against bacterial growth and biofilm formation and diminished bacterial fitness costs that suppress the emergence of tolerance to antibiotics. We show that changes in bacteria caused by environmentally relevant concentrations of sublethal antibiotics can affect phage-host dynamics that are commonly overlooked in vitro but can result in unexpected environmental consequences.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus Phages/drug effects , Bacillus cereus/drug effects , Bacteriophage T3/drug effects , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Kanamycin/pharmacology , Neomycin/pharmacology , Bacillus Phages/growth & development , Bacillus cereus/physiology , Bacillus cereus/virology , Bacteriophage T3/growth & development , Biofilms/growth & development , Escherichia coli/physiology , Escherichia coli/virology , Tetracycline/pharmacology
12.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809305

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


Subject(s)
Bacillus cereus/physiology , Chromium/pharmacokinetics , Mustard Plant/metabolism , Mustard Plant/microbiology , Soil Pollutants/pharmacokinetics , Antioxidants/metabolism , Bacillus cereus/genetics , Biodegradation, Environmental , Chlorophyll/metabolism , Genes, Bacterial , Mustard Plant/growth & development , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/physiology , Soil Microbiology , Stress, Physiological , Symbiosis
13.
Braz J Microbiol ; 52(2): 919-926, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33619697

ABSTRACT

Bacillus cereus is a relevant foodborne pathogen and biofilm producer which can contaminate and persist in the processing environment of both high and low water activity foods. Because of this, it is crucial to understand better the resistance of this pathogen biofilm to different sanitation methods. The aim of this study was to evaluate the efficacy of dry sanitizing treatments against B. cereus biofilm formed on stainless steel (SS) and polypropylene (PP). Biofilm formation was held through the static method at 25 °C. After 4 days of incubation, coupons were exposed for up to 30 min to UV-C light, dry heat, gaseous ozone, 70% ethanol, and a commercial sanitizer. Sodium hypochlorite (200 mg/l) was also tested in two different pH values (7 and 11) for comparison purposes. In general, the surface material did not influence (p > 0.05) the performance of the treatments. From 10 min of exposure, 70% ethanol and the commercial product caused the lowest reductions on both surfaces. In addition, dry heat exhibited a poor performance on PP, with reductions < 1 log CFU/cm2. UV-C light on SS and PP and ozone on PP achieved reductions around 2 log CFU/cm2 after 30 min. The same level of reduction was obtained after 5 or 10 min using sodium hypochlorite (200 mg/l). Therefore, the results showed that dry sanitizing methods are not as effective as sodium hypochlorite against B. cereus biofilms. Further studies to evaluate the efficacy of the combination of dry methods are necessary.


Subject(s)
Bacillus cereus/physiology , Biofilms/growth & development , Desiccation/methods , Disinfection/methods , Bacillus cereus/drug effects , Biofilms/drug effects , Colony Count, Microbial , Disinfectants/pharmacology , Food Microbiology , Hot Temperature , Polypropylenes , Stainless Steel
14.
J Vis Exp ; (168)2021 02 06.
Article in English | MEDLINE | ID: mdl-33616100

ABSTRACT

Intraocular bacterial infections are a danger to the vision. Researchers use animal models to investigate the host and bacterial factors and immune response pathways associated with infection to identify viable therapeutic targets and to test drugs to prevent blindness. The intravitreal injection technique is used to inject organisms, drugs, or other substances directly into the vitreous cavity in the posterior segment of the eye. Here, we demonstrated this injection technique to initiate infection in the mouse eye and the technique of quantifying intraocular bacteria. Bacillus cereus was grown in brain heart infusion liquid media for 18 hours and resuspended to a concentration 100 colony forming units (CFU)/0.5 µL. A C57BL/6J mouse was anesthetized using a combination of ketamine and xylazine. Using a picoliter microinjector and glass capillary needles, 0.5 µL of the Bacillus suspension was injected into the mid vitreous of the mouse eye. The contralateral control eye was either injected with sterile media (surgical control) or was not injected (absolute control). At 10 hours post infection, mice were euthanized, and eyes were harvested using sterile surgical tweezers and placed into a tube containing 400 µL sterile PBS and 1 mm sterile glass beads. For ELISAs or myeloperoxidase assays, proteinase inhibitor was added to the tubes. For RNA extraction, the appropriate lysis buffer was added. Eyes were homogenized in a tissue homogenizer for 1-2 minutes. Homogenates were serially diluted 10-fold in PBS and track diluted onto agar plates. The remainder of the homogenates were stored at -80 °C for additional assays. Plates were incubated for 24 hours and CFU per eye was quantified. These techniques result in reproducible infections in mouse eyes and facilitate quantitation of viable bacteria, the host immune response, and omics of host and bacterial gene expression.


Subject(s)
Endophthalmitis/microbiology , Eye Infections, Bacterial/microbiology , Animals , Bacillus cereus/physiology , Bacillus cereus/ultrastructure , Colony Count, Microbial , Disease Models, Animal , Eye/microbiology , Eye/pathology , Intravitreal Injections , Mice, Inbred C57BL , Preservation, Biological
15.
Planta ; 253(2): 25, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33404767

ABSTRACT

MAIN CONCLUSION: The presence of Bacillus cereus plays a key role in clubroot suppression and improves plant biomass in pak choi. B. cereus is reported for the first time as a novel biocontrol agent against clubroot. Plasmodiophora brassicae Woronin causes a devastating infectious disease known as clubroot that is damaging to cruciferous vegetables. This study aimed to isolate beneficial bacteria from the rhizosphere soil of pak choi (Brassica campestris sp. chinensis) and to evaluate the ability of the isolate to reduce the severity of clubroot. Strains obtained from the rhizosphere of symptomless pak choi were first selected on the basis of their germination inhibition rate and effects on the viability of P. brassicae resting spores. Eight bacterial isolates had inhibitory effects against the resting spores of clubroot causing pathogen. However, MZ-12 showed the highest inhibitory effect at 73.4%. Inoculation with MZ-12 enhanced the plant biomass relative to plants grown without MZ-12 as well as P. brassicae infected plants. Furthermore, enhanced antioxidant enzymatic activities were observed in clubroot-infected plants during bacterial association. Co-inoculation of the plant with both P. brassicae and MZ-12 resulted in a 64% reduction of gall formation in comparison to plants inoculated with P. brassicae only. Three applications of MZ-12 to plants infected with P. brassicae at 7, 14 and 21 days after seeding (DAS) were more effective than one application and repressed root hair infection. According to 16S rDNA sequence analysis, strain MZ-12 was identified as had a 100% sequence similarity with type strain Bacillus cereus. The findings of the present study will facilitate further investigation into biological mechanisms of cruciferous clubroot control.


Subject(s)
Bacillus cereus , Brassica , Plant Diseases , Plant Roots , Plasmodiophorida , Bacillus cereus/physiology , Brassica/microbiology , Brassica/parasitology , Microbial Interactions , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/microbiology , Plant Roots/parasitology , Plant Tumors/microbiology , Plant Tumors/parasitology , Plasmodiophorida/physiology
16.
Food Chem ; 339: 127902, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32920304

ABSTRACT

A protoberberine alkaloid, (-)-tetrahydroberberrubine∙acetate (THBA) was assessed for its antioxidant potential and ability to inhibit the growth of a food hazard bacterium Bacillus cereus in vitro and in situ. THBA displayed significant and dose-dependent cellular antioxidant potential against hydrogen peroxide-induced oxidative stress in NIH 3T3 fibroblast cells and decreased the ROS levels as well as increased the expression levels of SOD1 and SOD2 enzymes. The inhibitory spectrum of THBA confirmed its mechanistic role in the disruption of the membrane integrity of B. cereus as evidenced by the results of time-inactivation, cell membrane integrity, NPN membrane uptake, membrane potential, and electron microscopy analyses. Moreover, THBA inhibited biofilm formation by B. cereus and disrupted pre-established biofilms on a glass surface. Furthermore, THBA was also able to inhibit B. cereus in raw rice with a significant amount of reduction in CFU counts, suggesting its potential role as a natural antioxidant and antimicrobial agent.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/metabolism , Berberine/analogs & derivatives , Biofilms/drug effects , Oryza/microbiology , Alkaloids/chemistry , Animals , Anti-Infective Agents/chemistry , Antioxidants/pharmacology , Bacillus cereus/physiology , Bacillus cereus/radiation effects , Berberine/chemistry , Berberine/pharmacology , Biofilms/radiation effects , Cell Survival/drug effects , Food Microbiology , Mice , NIH 3T3 Cells , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/metabolism , Ultraviolet Rays
17.
Foodborne Pathog Dis ; 18(1): 8-15, 2021 01.
Article in English | MEDLINE | ID: mdl-32865425

ABSTRACT

This study was conducted to reveal the genotyping, antimicrobial susceptibility, and biofilm formation of Bacillus cereus isolated from powdered food products in China. Five hundred powdered food samples were collected from five provinces in China: 100 samples each of powdered infant formula (PIF), soy milk powder (SMP), lotus root powder (LRP), walnut powder (WP), and rice flour (RF). The genotyping of isolates was analyzed using multilocus sequence typing; meanwhile, antimicrobial susceptibility, and ability of biofilms formation on stainless steel tube of isolates were evaluated. Forty-two B. cereus strains were detected with an overall contamination rate of 8.4%, as well as, the highest B. cereus contamination rate was found in SMP (10%), followed by LRP (9%), WP (9%), RF (8%), and PIF (6%). These isolates were divided into 22 sequence types (STs); among them, ST32 (4/42, 9.5%) was the predominant ST. Phylogenetic relationships showed that the 42 strains of B. cereus were divided into three groups (group I, group II, and group III). Antimicrobial susceptibility testing indicated that all isolates were susceptible to tetracycline, gentamicin, erythromycin, and chloramphenicol, while resistant to ampicillin, cefepime, oxacillin, and rifampin. The analysis of ability of biofilm formation on stainless steel tube showed optical density (OD)595 value of 66.7% of B. cereus isolates was greater than 1. The OD595 level of isolates belonging to group III was higher compared with the other two groups, and OD595 values of B. cereus HB1 and HN5 were greater than 2. These findings improved the understanding of the characteristics of B. cereus isolated from powdered food products in China, and provided a theoretical basis for the prevention and control of B. cereus in food industry.


Subject(s)
Bacillus cereus/isolation & purification , Biofilms/growth & development , Drug Resistance, Bacterial/physiology , Food Contamination/analysis , Foods, Specialized/microbiology , Bacillus cereus/genetics , Bacillus cereus/physiology , China , Food Microbiology , Genotype , Humans , Microbial Sensitivity Tests , Phylogeny , Powders
18.
Food Chem ; 344: 128675, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33277126

ABSTRACT

This study was conducted to evaluate the inactivation of Bacillus cereus spore in mesquite flour with intense pulsed light (IPL) and gamma radiation. The physical, chemical, and toxicity of treated mesquite flour were also investigated. The results showed that up to 3.51 log10CFU/g B. cereus spore inactivation was achieved with 8 kGy of gamma radiation, and up to 1.69 log10CFU/g reductions could be achieved after 28s of catalytic IPL exposure. Although chemometric analysis showed 9-hydroxy-10,12-octadecadienoic acid was slightly increased after a 28s-catalytic IPL treatment, the concentration is within the acceptable range. No significant increase in acetic or propionic acids (typical off-flavor volatile compounds) was observed after either treatment. For cytotoxicity, the Caco-2 cell viability analysis revealed that these two technologies did not induce significant cytotoxicity to the treated mesquite flour. Overall, these two technologies exhibit strong potential for the decontamination of B. cereus in mesquite flour.


Subject(s)
Bacillus cereus/physiology , Bacillus cereus/radiation effects , Flour/microbiology , Gamma Rays , Light , Prosopis/chemistry , Spores, Bacterial/radiation effects , Caco-2 Cells , Humans , Spores, Bacterial/physiology
19.
Mol Plant Pathol ; 22(1): 130-144, 2021 01.
Article in English | MEDLINE | ID: mdl-33230892

ABSTRACT

Verticillium wilt is a plant vascular disease caused by the soilborne fungus Verticillium dahliae that severely limits cotton production. In a previous study, we screened Bacillus cereus YUPP-10, an efficient antagonistic bacterium, to uncover mechanisms for controlling verticillium wilt. Here, we report a novel antimicrobial cyclodextrin glycosyltransferase (CGTase) from YUPP-10. Compared to other CGTases, six different conserved domains were identified, and six mutants were constructed by gene splicing with overlap extension PCR. Functional analysis showed that domain D was important for hydrolysis activity and domains A1 and C were important for inducing disease resistance. Direct effects of recombinant CGTase on V. dahliae included reduced mycelial growth, spore germination, spore production, and microsclerotia germination. In addition, CGTase also elicited cotton's innate defence reactions. Transgenic Arabidopsis thaliana lines that overexpress CGTase showed higher resistance to verticillium wilt. Transgenic CGTase A. thaliana plants grew faster and resisted disease better. CGTase overexpression enabled a burst of reactive oxygen species production and activated pathogenesis-related gene expression, indicating that the transgenic cotton was better prepared to protect itself from infection. Our work revealed that CGTase could inhibit the growth of V. dahliae, activate innate immunity, and play a major role in the biocontrol of fungal pathogens.


Subject(s)
Arabidopsis/microbiology , Ascomycota/growth & development , Bacillus cereus/enzymology , Glucosyltransferases/metabolism , Plant Diseases/microbiology , Arabidopsis/immunology , Bacillus cereus/genetics , Bacillus cereus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucosyltransferases/genetics , Plant Diseases/immunology
20.
Sci Rep ; 10(1): 18421, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116186

ABSTRACT

The efficient biological treatment of saline wastewater has been limited by the low activities of microorganisms under saline conditions. High salinity poses unbalance osmotic stress across the cell wall and even leads to cell plasmolysis. In this work, we aim to isolate salt-tolerant bacterial strains from activated sludge, and apply them for degrading chemical oxygen demand (COD) of saline organic wastewater. Two salt-tolerant strains were screened and isolated from activated sludge, which was domesticated with salty water for over 300 days. The two strains were identified as Bacillus cereus (strain A) and Bacillus anthracis (strain B) through 16S rRNA sequencing. The degradation characteristics of strain A were explored. The results showed the relative membrane permeability of strain A remained stable under high salt stress, which glycine and proline play an important role to maintain cell osmotic. The protein and soluble sugar amounts of strain were increased by higher salt concentrations. In simulating saline wastewater, the optimum culture temperature, pH, salinity, influent COD concentration and inoculation amount of strain A were 35 °C, 9, 4%, 8000 mg L-1, 6%, respectively. Optimal conditions could provide guidance for the treatment of practical saline wastewater. The linear regression model of each impact factor built based on the result PB experiment revealed that cross-linking time has the most significant influence on COD removal for salt-tolerant strains. It will provide theoretical basis for biological treatment of saline organic wastewater.


Subject(s)
Bacillus anthracis/isolation & purification , Bacillus cereus/isolation & purification , Salt Tolerance , Wastewater/microbiology , Bacillus anthracis/physiology , Bacillus cereus/physiology , Biological Oxygen Demand Analysis , Cell Membrane Permeability , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...