Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985570

ABSTRACT

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Subject(s)
Acyclic Monoterpenes , Bacillus cereus , Biofilms , Acyclic Monoterpenes/pharmacology , Anti-Infective Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus cereus/ultrastructure , Spores, Bacterial/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests , Oryza/microbiology , Membrane Potentials/drug effects , Intracellular Space/enzymology , Adenosine Triphosphate/metabolism , Reactive Oxygen Species/metabolism , Microscopy, Electron, Scanning , Food Microbiology
2.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830248

ABSTRACT

The endospores (spores) of many Bacillus cereus sensu lato species are decorated with multiple hair/pilus-like appendages. Although they have been observed for more than 50 years, all efforts to characterize these fibers in detail have failed until now, largely due to their extraordinary resilience to proteolytic digestion and chemical solubilization. A recent structural analysis of B. cereus endospore appendages (Enas) using cryo-electron microscopy has revealed the structure of two distinct fiber morphologies: the longer and more abundant "Staggered-type" (S-Ena) and the shorter "Ladder-like" type (L-Ena), which further enabled the identification of the genes encoding the S-Ena. Ena homologs are widely and uniquely distributed among B. cereus sensu lato species, suggesting that appendages play important functional roles in these species. The discovery of ena genes is expected to facilitate functional studies involving Ena-depleted mutant spores to explore the role of Enas in the interaction between spores and their environment. Given the importance of B. cereus spores for the food industry and in medicine, there is a need for a better understanding of their biological functions and physicochemical properties. In this review, we discuss the current understanding of the Ena structure and the potential roles these remarkable fibers may play in the adhesion of spores to biotic and abiotic surfaces, aggregation, and biofilm formation.


Subject(s)
Bacillus cereus/ultrastructure , Bacterial Proteins/chemistry , Fimbriae, Bacterial/ultrastructure , Spores, Bacterial/ultrastructure , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biofilms/growth & development , Cryoelectron Microscopy , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Spores, Bacterial/genetics , Spores, Bacterial/metabolism
4.
EMBO J ; 40(17): e106887, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34031903

ABSTRACT

Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by ß-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.


Subject(s)
Bacillus cereus/ultrastructure , Bacterial Proteins/chemistry , Fimbriae, Bacterial/ultrastructure , Bacillus cereus/genetics , Bacterial Proteins/genetics , Cryoelectron Microscopy , Fimbriae, Bacterial/chemistry , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Stability
5.
J Vis Exp ; (168)2021 02 06.
Article in English | MEDLINE | ID: mdl-33616100

ABSTRACT

Intraocular bacterial infections are a danger to the vision. Researchers use animal models to investigate the host and bacterial factors and immune response pathways associated with infection to identify viable therapeutic targets and to test drugs to prevent blindness. The intravitreal injection technique is used to inject organisms, drugs, or other substances directly into the vitreous cavity in the posterior segment of the eye. Here, we demonstrated this injection technique to initiate infection in the mouse eye and the technique of quantifying intraocular bacteria. Bacillus cereus was grown in brain heart infusion liquid media for 18 hours and resuspended to a concentration 100 colony forming units (CFU)/0.5 µL. A C57BL/6J mouse was anesthetized using a combination of ketamine and xylazine. Using a picoliter microinjector and glass capillary needles, 0.5 µL of the Bacillus suspension was injected into the mid vitreous of the mouse eye. The contralateral control eye was either injected with sterile media (surgical control) or was not injected (absolute control). At 10 hours post infection, mice were euthanized, and eyes were harvested using sterile surgical tweezers and placed into a tube containing 400 µL sterile PBS and 1 mm sterile glass beads. For ELISAs or myeloperoxidase assays, proteinase inhibitor was added to the tubes. For RNA extraction, the appropriate lysis buffer was added. Eyes were homogenized in a tissue homogenizer for 1-2 minutes. Homogenates were serially diluted 10-fold in PBS and track diluted onto agar plates. The remainder of the homogenates were stored at -80 °C for additional assays. Plates were incubated for 24 hours and CFU per eye was quantified. These techniques result in reproducible infections in mouse eyes and facilitate quantitation of viable bacteria, the host immune response, and omics of host and bacterial gene expression.


Subject(s)
Endophthalmitis/microbiology , Eye Infections, Bacterial/microbiology , Animals , Bacillus cereus/physiology , Bacillus cereus/ultrastructure , Colony Count, Microbial , Disease Models, Animal , Eye/microbiology , Eye/pathology , Intravitreal Injections , Mice, Inbred C57BL , Preservation, Biological
6.
Biocontrol Sci ; 25(4): 203-213, 2020.
Article in English | MEDLINE | ID: mdl-33281178

ABSTRACT

Processes from spore germination to outgrowth were observed in detail using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for Bacillus cereus and Bacillus subtilis. At 15 and 30 min after germination induction, SEM observation and SEM-EDX analysis of Bacillus spores prepared by freeze substitution showed that spherical structures including compounds having the same elemental ratio as that of the spore were observed on the surface of the spores. The results suggested the leakages of the cellular materials from the spores. At 360 min, B. cereus spores in outgrowth phase elongated with hemispherical structures at the end of the long side of the cells. The discoid structures with a hole (20-30 nm diameter) in the center was observed at 360 min. Confocal laser scanning microscopy after staining with fluorescence-labeled anti-spore antibodies showed that the hemispherical and discoid structures originated from the spore coat. These structures broke down after detached from the cells in outgrowth phase.


Subject(s)
Bacillus cereus/growth & development , Bacillus cereus/ultrastructure , Bacillus subtilis/growth & development , Bacillus subtilis/ultrastructure , Spores, Bacterial/growth & development , Spores, Bacterial/ultrastructure , Bacterial Physiological Phenomena
7.
PLoS One ; 15(11): e0242657, 2020.
Article in English | MEDLINE | ID: mdl-33232350

ABSTRACT

Several bacterial species belonging to the Bacillus cereus group are known to be causative agents of food poisoning and severe human diseases. Bacteriophages and their lytic enzymes called endolysins have been widely shown to provide for a supplemental or primary means of treating bacterial infections. In this work we present a new broad-host-range phage Izhevsk, which infects the members of the Bacillus cereus group. Transmission electron microscopy, genome sequencing and comparative analyses revealed that Izhevsk is a temperate phage with Siphoviridae morphology and belongs to the same genus as the previously described but taxonomically unclassified bacteriophages Tsamsa and Diildio. The Ply57 endolysin of Izhevsk phage has broad-spectrum activity against B. cereus sensu lato. The thermolability of Ply57 is higher than that of the PlyG of Wß phage. This work contributes to our current understanding of phage biodiversity and may be useful for further development of efficient antimicrobials aimed at diagnosing and treating infectious diseases and food contaminations caused by the Bacillus cereus group of bacteria.


Subject(s)
Bacillus Phages , Bacillus cereus , Endopeptidases/metabolism , Hot Temperature , Siphoviridae , Viral Proteins/metabolism , Bacillus Phages/classification , Bacillus Phages/enzymology , Bacillus Phages/ultrastructure , Bacillus cereus/ultrastructure , Bacillus cereus/virology , Enzyme Stability , Siphoviridae/classification , Siphoviridae/enzymology , Siphoviridae/ultrastructure
8.
Sci Rep ; 10(1): 15525, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968098

ABSTRACT

A rapid method for screening pathogens can revolutionize health care by enabling infection control through medication before symptom. Here we report on label-free single-cell identifications of clinically-important pathogenic bacteria by using a polymer-integrated low thickness-to-diameter aspect ratio pore and machine learning-driven resistive pulse analyses. A high-spatiotemporal resolution of this electrical sensor enabled to observe galvanotactic response intrinsic to the microbes during their translocation. We demonstrated discrimination of the cellular motility via signal pattern classifications in a high-dimensional feature space. As the detection-to-decision can be completed within milliseconds, the present technique may be used for real-time screening of pathogenic bacteria for environmental and medical applications.


Subject(s)
Bacterial Infections/diagnosis , Biosensing Techniques/methods , Machine Learning , Bacillus cereus/ultrastructure , Bacterial Infections/microbiology , Electronics , Escherichia coli/ultrastructure , Micropore Filters , Microscopy, Electron, Scanning , Pseudomonas fluorescens/ultrastructure , Salmonella enterica/ultrastructure , Staphylococcus aureus/ultrastructure
9.
PLoS One ; 14(8): e0220975, 2019.
Article in English | MEDLINE | ID: mdl-31398235

ABSTRACT

The bacterial strain WD-2, which was capable of efficiently degrading prochloraz-manganese, was isolated from soil contaminated with prochloraz-manganese, selected through enrichment culturing and identified as Bacillus cereus. Test results indicated that the optimal temperature and pH for bacterial growth were 35-40°C and 7.0-8.0, respectively. The highest degradation rate was above 88-90% when the pH was 7.0~8.0 and reached a maximum value (90.7%) at approximately 8.0. In addition, the bacterium showed the greatest growth ability with an OD600 of 0.805 and the highest degradation rate (68.2%) when glucose was chosen as the carbon source, while the difference in nitrogen source had no obvious influence on bacterial growth. The degradation rate exceeded 80% when the NaCl concentration was 0~2% and the rate reached 89.2% at 1%. When the concentration was higher than 7%, the growth of WD-2 and the degradation of prochloraz-manganese were found to be inhibited, and the degradation rate was merely 8.5%. The results indicated that strain WD-2 was able to effectively degrade prochloraz-manganese and might contribute to the bioremediation of contaminated soils.


Subject(s)
Bacillus cereus/isolation & purification , Imidazoles/analysis , Manganese/analysis , Soil Microbiology , Soil Pollutants/analysis , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus cereus/ultrastructure , Biodegradation, Environmental/drug effects , Carbon/pharmacology , Hydrogen-Ion Concentration , Kinetics , Nitrogen/pharmacology , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Temperature
10.
J Microbiol Biotechnol ; 29(6): 887-896, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31216842

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based pathogen identification relies on the ribosomal protein spectra provided in the proprietary database. Although these mass spectra can discern various pathogens at species level, the spectra-based method still has limitations in identifying closely-related microbial species. In this study, to overcome the limits of the current MALDI-TOF MS identification method using ribosomal protein spectra, we applied MALDI-TOF MS of low-mass profiling to the identification of two genetically related Bacillus species, the food-borne pathogen Bacillus cereus, and the insect pathogen Bacillus thuringiensis. The mass spectra of small molecules from 17 type strains of two bacilli were compared to the morphological, biochemical, and genetic identification methods of pathogens. The specific mass peaks in the low-mass range (m/z 500- 3,000) successfully identified various closely-related strains belonging to these two reference species. The intensity profiles of the MALDI-TOF mass spectra clearly revealed the differences between the two genetically-related species at strain level. We suggest that small molecules with low molecular weight, 714.2 and 906.5 m/z can be potential mass biomarkers used for reliable identification of B. cereus and B. thuringiensis.


Subject(s)
Bacillus cereus/chemistry , Bacillus cereus/classification , Bacterial Proteins/chemistry , Bacterial Typing Techniques/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Bacillus/chemistry , Bacillus/classification , Bacillus/ultrastructure , Bacillus cereus/ultrastructure , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/classification , Bacillus thuringiensis/ultrastructure , Biomarkers/chemistry , DNA, Bacterial/genetics , Foodborne Diseases/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
11.
Sci Rep ; 9(1): 1304, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718605

ABSTRACT

The striking feature of the ubiquitous protein EfTu (Thermo unstable ribosomal Elongation factor) is its moonlighting (multifunctional) activity. Beyond its function at the ribosomal level it should be exported to the bacterial surface and act as an environmental sensor. In Bacillus cereus, and other cutaneous bacteria, it serves as a Substance P (SP) receptor and is essential for bacterial adaptation to the host. However, the modus operandi of EfTu as a bacterial sensor remains to be investigated. Studies realized by confocal and transmission electron microscopy revealed that, in the absence of an exogenous signal, EfTu is not exposed on the bacterial surface but is recruited under the effect of SP. In addition, SP acts as a transcriptional regulator of the tuf gene encoding for EfTu. As observed using gadolinium chloride, an inhibitor of membrane mechanosensitive channels (Msc), Msc control EfTu export and subsequently the bacterial response to SP both in terms of cytotoxicity and biofilm formation activity. Microscale thermophoresis revealed that in response to SP, EfTu can form homopolymers. This event should occur after EfTu export and, as shown by proteo-liposome reconstruction studies, SP appears to promote EfTu polymers association to the membrane, leading subsequently to the bacterial response. Molecular modeling suggests that this mechanism should involve EfTu unfolding and insertion into the bacterial cytoplasmic membrane, presumably through formation of homopolymers. This study is unraveling the original mechanism action of EfTu as a bacterial sensor but also reveals that this protein should have a broader role, including in eukaryotes.


Subject(s)
Bacillus cereus/physiology , Peptide Elongation Factor Tu/metabolism , Substance P/metabolism , Bacillus cereus/drug effects , Bacillus cereus/ultrastructure , Biofilms/drug effects , Gadolinium/pharmacology , Gene Expression Regulation, Bacterial , Models, Molecular , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA, Messenger/genetics
12.
Environ Pollut ; 243(Pt A): 444-452, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30216877

ABSTRACT

Soil is a heterogeneous porous media that is comprised of a variety of organo-mineral aggregates. Sorption of heavy metals onto these composite solids is a key process that controls heavy metal mobility and fate in the natural environment. Pollution from a combination of heavy metals is common in soil, therefore, understanding the competitive binding behavior of metal ions to organo-mineral composites is important in order to predict metal mobility and fate. In this study, batch experiments were paired with spectroscopic studies to probe the sorption characteristics of ternary CdNiCu sorbates to a binary organo-goethite composite made with Bacillus cereus cells. Scanning electron microscopy shows that goethite nano-sized crystals are closely associated with the bacterial surfaces. Sorption experiments show a larger adsorptivity and affinity for Cu than Cd/Ni on goethite and B. cereus, and the goethite-B. cereus composite. X-ray photoelectron spectroscopy reveals that carboxylate and phosphate functional moieties present on the bacterial cell walls are primarily responsible for metal sorption to the goethite-B. cereus composite. Synchrotron-based X-ray fluorescence shows that Cu and Ni are predominately associated with the bacterial fraction of the goethite-B. cereus composite, whereas Cd is mainly associated with the goethite fraction. The findings of this research have important implications for predicting the mobility and fate of heavy metals in soil multi-component systems.


Subject(s)
Adsorption , Bacillus cereus/chemistry , Iron Compounds/chemistry , Metals, Heavy/analysis , Minerals/chemistry , Soil Microbiology , Bacillus cereus/ultrastructure , Binding, Competitive , Cadmium/analysis , Copper/analysis , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nickel/analysis , Soil Pollutants/analysis
13.
Sci Rep ; 7(1): 11409, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900166

ABSTRACT

We developed a novel type of Meju starter culture using single and combined extracts of Allium sativum (garlic clove), Nelumbo nucifera (lotus leaves), and Ginkgo biloba (ginkgo leaves) to improve the quality and functionality of Meju-based fermented products. Meju samples fermented with plant extracts (10 mg/ml) showed phenolic contents of 11.4-31.6 mg/g (gallic acid equivalents). Samples of extracts (garlic clove, lotus leaves, ginkgo leaves and their combination) fermented with Meju strongly inhibited tyrosinase, α-glucosidase, and elastase activities by 36.43-64.34%, 45.08-48.02%, and 4.52-10.90%, respectively. Specifically, ginkgo leaves extract added to fermented Meju samples at different concentrations (1% and 10%) strongly inhibited tyrosinase, α-glucosidase, and elastase activities and exhibited a potent antibacterial effect against Bacillus cereus with a significant reduction in bacterial counts compared with the effects observed for garlic clove and lotus leaf added to Meju samples. Scanning electron microscopy revealed severe morphological alterations of the B. cereus cell wall in response to ginkgo leaf extracts. Gas chromatographic mass spectroscopic analysis of plant extract-supplemented Meju samples and control Meju samples identified 113 bioactive compounds representing 98.44-99.98% total extract. The proposed approach may be useful for the development of various fermented functional foods at traditional and commercial levels.


Subject(s)
Bacillus cereus/drug effects , Cultured Milk Products , Plant Extracts/pharmacology , Bacillus cereus/ultrastructure , Cultured Milk Products/analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Gas Chromatography-Mass Spectrometry , Phenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry
14.
Mol Plant Microbe Interact ; 30(8): 603-619, 2017 08.
Article in English | MEDLINE | ID: mdl-28430084

ABSTRACT

The rhizosphere bacterium Bacillus cereus AR156 is capable of forming biofilms, killing nematodes, and protecting plants. However, the underlying molecular mechanisms of these processes are not well understood. In this study, we found that the isogenic mutants ΔBcspo0A and ΔBcsinI have significantly reduced colonization and nematicidal activity in vitro and biological control efficacy on the tomato plant under greenhouse conditions. We further investigated the role of the spo0A-sinI-sinR regulatory circuit in biofilm formation, killing against nematodes, and biological control in AR156. Results from mutagenesis of those regulatory genes in AR156 and their heterologous expression in B. subtilis suggested that the spo0A-sinI-sinR genetic circuit is not only essential for biofilm formation and cell differentiation in AR156 but also able to functionally replace their counterparts in B. subtilis in a nearly indistinguishable fashion. Genome-wide transcriptional profiling in the wild type and the ΔBcspo0A and ΔBcsinI mutants further revealed hundreds of differentially expressed genes, likely positively regulated by both Spo0A and SinI (via SinR) in AR156. Among them, 29 genes are predicted to be directly controlled by SinR, whose counterpart in B. subtilis is a biofilm master repressor. Collectively, our studies demonstrated the essential role of the spo0A-sinI-sinR regulatory circuit in biofilm formation, cell differentiation, and bacteria-host interactions in B. cereus AR156.


Subject(s)
Bacillus cereus/physiology , Bacterial Proteins/metabolism , Biofilms , Nematoda/physiology , Amino Acid Sequence , Animals , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/ultrastructure , Bacterial Proteins/chemistry , Base Sequence , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genetic Association Studies , Mutation/genetics , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Roots/parasitology , Spores, Bacterial/physiology
15.
Environ Pollut ; 218: 863-869, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27524254

ABSTRACT

Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn2+ which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn2+ played a major role in the microbial toxicity of ultra-fine-ZnO.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Carboxylic Acids/chemistry , Escherichia coli O157/drug effects , Phosphates/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Azides/chemistry , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Buffers , Dose-Response Relationship, Drug , Escherichia coli O157/metabolism , Escherichia coli O157/ultrastructure , Microbial Viability/drug effects , Microscopy, Electron, Scanning , Propidium/analogs & derivatives , Propidium/chemistry , Reactive Oxygen Species/metabolism , Solubility , Solutions , Zinc Oxide/chemistry
16.
Foodborne Pathog Dis ; 12(6): 529-35, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25928035

ABSTRACT

Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 µg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 µg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Listeria monocytogenes/drug effects , Pinus/chemistry , Plant Oils/pharmacology , Wood/chemistry , Anti-Bacterial Agents/economics , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/growth & development , Bacillus cereus/pathogenicity , Bacillus cereus/ultrastructure , Biofuels/economics , Cell Membrane Permeability/drug effects , Construction Industry/economics , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Hot Temperature , Humans , Industrial Waste/analysis , Industrial Waste/economics , Listeria monocytogenes/growth & development , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/ultrastructure , Microbial Sensitivity Tests , Microbial Viability , Microscopy, Electron, Scanning , Osmoregulation/drug effects , Plant Oils/economics , Plant Oils/isolation & purification , Republic of Korea , Wood/economics
17.
Biochim Biophys Acta ; 1848(5): 1081-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25660753

ABSTRACT

Cationic antimicrobial peptides (CAMPs) are important elements of innate immunity in higher organisms, representing an ancient defense mechanism against pathogenic bacteria. These peptides exhibit broad-spectrum antimicrobial activities, utilizing mechanisms that involve targeting bacterial membranes. Recently, a 34-residue CAMP (NA-CATH) was identified in cDNA from the venom gland of the Chinese cobra (Naja atra). A semi-conserved 11-residue pattern observed in the NA-CATH sequence provided the basis for generating an 11-residue truncated peptide, ATRA-1A, and its corresponding D-peptide isomer. While the antimicrobial and biophysical properties of the ATRA-1A stereoisomers have been investigated, their modes of action remain unclear. More broadly, mechanistic differences that can arise when investigating minimal antimicrobial units within larger naturally occurring CAMPs have not been rigorously explored. Therefore, the studies reported here are focused on this question and the interactions of full-length NA-CATH and the truncated ATRA-1A isomers with bacterial membranes. The results of these studies indicate that in engineering the ATRA-1A isomers, the associated change in peptide length and charge dramatically impacts not only their antimicrobial effectiveness, but also the mechanism of action they employ relative to that of the full-length parent peptide NA-CATH. These insights are relevant to future efforts to develop shorter versions of larger naturally occurring CAMPs for potential therapeutic applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Cathelicidins/pharmacology , Cell Membrane Permeability/drug effects , Cell Membrane/drug effects , Escherichia coli/drug effects , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Cathelicidins/chemistry , Cathelicidins/isolation & purification , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Dose-Response Relationship, Drug , Elapid Venoms/chemistry , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Kinetics , Microbial Viability/drug effects , Oligopeptides/chemistry , Peptide Fragments/chemistry , Protein Structure, Secondary , Structure-Activity Relationship
18.
J Microsc ; 258(1): 49-58, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581787

ABSTRACT

Bacteria from the genus Bacillus are able to transform into metabolically dormant states called (endo) spores in response to nutrient deprivation and other harsh conditions. These morphologically distinct spores are fascinating constructs, amongst the most durable cells in nature, and have attracted attention owing to their relevance in food-related illnesses and bioterrorism. Observing the course of bacterial spore formation (sporulation) spatially, temporally and mechanically, from the vegetative cell to a mature spore, is critical for a better understanding of this process. Here, we present a fast and versatile strategy for monitoring both the morphological and mechanical changes of Bacillus cereus bacteria at the nanoscale using atomic force microscopy. Through a strategy of imaging and nanomechanical mapping, we show the morphogenesis of the endospore and released mature endospore. Finally, we investigate individual spores to characterize their surface mechanically. The progression in elasticity coupled with a similarity of characteristic distributions between the incipient endospores and the formed spores show these distinct stages. Taken together, our data demonstrates the power of atomic force microscopy applied in microbiology for probing this important biological process at the single cell scale.


Subject(s)
Bacillus cereus/physiology , Bacillus cereus/ultrastructure , Microscopy, Atomic Force/methods , Spores, Bacterial/ultrastructure , Elasticity
19.
J R Soc Interface ; 12(103)2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25505137

ABSTRACT

Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level.


Subject(s)
Bacillus cereus/physiology , Bacillus cereus/ultrastructure , Polysaccharides, Bacterial/metabolism , Microscopy, Atomic Force , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure
20.
Food Microbiol ; 45(Pt A): 26-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481059

ABSTRACT

Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity.


Subject(s)
Bacillus/drug effects , Food Microbiology , Geobacillus/drug effects , Nitrogen/pharmacology , Plasma Gases/pharmacology , Anti-Infective Agents/pharmacology , Bacillus/physiology , Bacillus/radiation effects , Bacillus/ultrastructure , Bacillus cereus/drug effects , Bacillus cereus/physiology , Bacillus cereus/radiation effects , Bacillus cereus/ultrastructure , Disinfectants/pharmacology , Food Contamination , Geobacillus/physiology , Geobacillus/radiation effects , Geobacillus/ultrastructure , Hot Temperature , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , Spores, Bacterial , Sterilization/methods , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...