Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.661
Filter
1.
Food Res Int ; 186: 114364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729726

ABSTRACT

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Subject(s)
Food Contamination , Triticum , Zearalenone , Zearalenone/analysis , Triticum/chemistry , Triticum/microbiology , Food Contamination/analysis , Bacillus megaterium/enzymology , Decontamination/methods , Food Microbiology , Food Handling/methods , Bacillus/enzymology , Seeds/chemistry , Seeds/microbiology , Microscopy, Electron, Scanning
2.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732601

ABSTRACT

Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.


Subject(s)
Bacillus megaterium , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Synbiotics , Humans , Male , Female , Adult , Double-Blind Method , Synbiotics/administration & dosage , Eicosapentaenoic Acid/blood , Young Adult , Docosahexaenoic Acids/blood , Middle Aged , Biomarkers/blood , Healthy Volunteers , Fish Oils/administration & dosage
3.
Sci Rep ; 14(1): 11389, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762518

ABSTRACT

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Subject(s)
Bacillus megaterium , Fertilizers , Phosphates , Phosphorus , Soil Microbiology , Soil , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Phosphorus/metabolism , Soil/chemistry , Bacillus megaterium/metabolism , Bacillus megaterium/genetics , Bacillus megaterium/growth & development , Phosphates/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/genetics
4.
Curr Microbiol ; 81(6): 139, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613599

ABSTRACT

Polyhydroxybutyrates (PHBs) are biopolymers that are good green alternative for synthetic carbon-based polymers, and are also one of the most researched members of the Polyhydroxyalkanoates (PHA) family. In this study, a gram-positive bacterial strain Bacillus megaterium LSRB 0103 was isolated from Pallikaranai Marshland, Chennai, India. Primary screening using Sudan Black dye revealed the presence of intracellular PHB granules. Minimal Davis Media (MDM) which was used or PHB production gave a yield of 0.7107 g/L. Subsequently, using response surface methodology (RSM), a central composite design (CCD) model was designed for media optimization having cornstarch, urea, and pH as independent variables. The findings of the CCD model were fitted into a second-order polynomial equation. The RSM model predicted the maximum PHB yield of 0.93 g/L, at these independent variable levels, cornstarch, 5 g/L; urea, 2.1 g/L; and pH 7.0; while the experimental PHB yield was 0.94 g/L, with a percentage error of 1.1%. This study is the first-time report of production of PHB by Bacillus megaterium using cornstarch and urea as substrate.


Subject(s)
Bacillus megaterium , Starch , Urea , Bacillus megaterium/genetics , India , Carbon
5.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542209

ABSTRACT

Bacillus megaterium is particularly known for its abundance in soils and its plant growth promotion. To characterize the metabolites excreted by this specie, we performed successive liquid/liquid extractions from bacteria culture medium with different polarity solvents (cyclohexane, dichloromethane, ethyl acetate and butanol) to separate the metabolites in different polarity groups. The extracts were characterized regarding their total phenolic content, the amount of reducing sugar, the concentration of primary amines and proteins, their chromatographic profile by HPLC-DAD-ELSD and their chemical identification by GC-MS. Among the 75 compounds which are produced by the bacteria, 19 identifications were for the first time found as metabolites of B. megaterium and 23 were described for the first time as metabolites in Bacillus genus. The different extracts containing B. megaterium metabolites showed interesting agronomic activity, with a global inhibition of seed germination rates of soya, sunflower, corn and ray grass, but not of corn, compared to culture medium alone. Our results suggest that B. megaterium can produce various metabolites, like butanediol, cyclic dipeptides, fatty acids, and hydrocarbons, with diverse effects and sometimes with opposite effects in order to modulate its response to plant growth and adapt to various environmental effects. These findings provide new insight into bioactive properties of this species for therapeutic uses on plants.


Subject(s)
Bacillus megaterium , Antioxidants/metabolism , Gas Chromatography-Mass Spectrometry
6.
Chembiochem ; 25(9): e202400006, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457364

ABSTRACT

High cell density cultivation is an established method for the production of various industrially important products such as recombinant proteins. However, these protocols are not always suitable for biocatalytic processes as the focus often lies on biomass production rather than high specific activities of the enzyme inside the cells. In contrast, a range of shake flask protocols are well known with high specific activities but rather low cell densities. To overcome this gap, we established a tailor-made fed-batch protocol combining both aspects: high cell density and high specific activities of heterologously produced enzyme. Using the example of an industrially relevant amine transaminase from Bacillus megaterium, we describe a strategy to optimize the cultivation yield based on the feed rate, IPTG concentration, and post-induction temperature. By adjusting these key parameters, we were able to increase the specific activity by 2.6-fold and the wet cell weight by even 17-fold compared to shake flasks. Finally, we were able to verify our established protocol by transferring it to another experimenter. With that, our optimization strategy can serve as a template for the production of high titers of heterologously produced, active enzymes and might enable the availability of these catalysts for upscaling biocatalytic processes.


Subject(s)
Bacillus megaterium , Escherichia coli , Transaminases , Bacillus megaterium/enzymology , Bacillus megaterium/metabolism , Transaminases/metabolism , Transaminases/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Amines/metabolism , Amines/chemistry , Biocatalysis
7.
Braz J Microbiol ; 55(1): 245-254, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212508

ABSTRACT

Plastics are widely used for diverse applications due to their versatility. However, their negative impact on ecosystems is undeniable due to their long-term degradation. Thus, there is a rising need for developing eco-friendlier alternatives to substitute fossil-based plastics, like biopolymers. PHA are synthesized intracellularly by microorganisms under stressful conditions of growth and have similar characteristics to conventional polymers, like their melting point, transition temperatures, crystallinity, and flexibility. Although it is feasible to use biopolymers for diverse industrial applications, their elevated production cost due to the supplies needed for microbiological procedures and the low productivity yields obtained have been the main limiting factors for their commercial success. The present study assessed the ability of Bacillus megaterium strain MNSH1-9K-1 to produce biopolymers using low-cost media from different kinds of fruit-peel residues. The results show that MNSH1-9K-1 can produce up to 58 g/L of PHB when grown in a medium prepared from orange-peel residues. The data obtained provide information to enhance the scalability of these kinds of biotechnological processes.


Subject(s)
Bacillus megaterium , Polyhydroxyalkanoates , Ecosystem , Biopolymers/metabolism , Biotechnology
8.
Microb Cell Fact ; 23(1): 35, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279170

ABSTRACT

BACKGROUND: Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. RESULTS: In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. CONCLUSION: It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.


Subject(s)
Bacillus megaterium , Silk , Silk/chemistry , Silk/metabolism , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Escherichia coli/metabolism , Recombinant Proteins , Bioreactors
9.
J Biomol Struct Dyn ; 42(3): 1429-1442, 2024.
Article in English | MEDLINE | ID: mdl-37038649

ABSTRACT

This study presents the initial structural model of L-haloacid dehalogenase (DehLBHS1) from Bacillus megaterium BHS1, an alkalotolerant bacterium known for its ability to degrade halogenated environmental pollutants. The model provides insights into the structural features of DehLBHS1 and expands our understanding of the enzymatic mechanisms involved in the degradation of these hazardous pollutants. Key amino acid residues (Arg40, Phe59, Asn118, Asn176, and Trp178) in DehLBHS1 were identified to play critical roles in catalysis and molecular recognition of haloalkanoic acid, essential for efficient binding and transformation of haloalkanoic acid molecules. DehLBHS1 was modeled using I-TASSER, yielding a best TM-score of 0.986 and an RMSD of 0.53 Å. Validation of the model using PROCHECK revealed that 89.2% of the residues were located in the most favored region, providing confidence in its structural accuracy. Molecular docking simulations showed that the non-simulated DehLBHS1 preferred 2,2DCP over other substrates, forming one hydrogen bond with Arg40 and exhibiting a minimum energy of -2.5 kJ/mol. The simulated DehLBHS1 exhibited a minimum energy of -4.3 kJ/mol and formed four hydrogen bonds with Arg40, Asn176, Asp9, and Tyr11, further confirming the preference for 2,2DCP. Molecular dynamics simulations supported this preference, based on various metrics, including RMSD, RMSF, gyration, hydrogen bonding, and molecular distance. MM-PBSA calculations showed that the DehLBHS1-2,2-DCP complex had a markedly lower binding energy (-21.363 ± 1.26 kcal/mol) than the DehLBHS1-3CP complex (-14.327 ± 1.738 kcal/mol). This finding has important implications for the substrate specificity and catalytic function of DehLBHS1, particularly in the bioremediation of 2,2-DCP in contaminated alkaline environments. These results provide a detailed view of the molecular interactions between the enzyme and its substrate and may aid in the development of more efficient biocatalytic strategies for the degradation of halogenated compounds.Communicated by Ramaswamy H. Sarma.


Subject(s)
Bacillus megaterium , Hydrolases , Molecular Docking Simulation , Turkey , Lakes , Molecular Dynamics Simulation
10.
Chembiochem ; 25(3): e202300650, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37994193

ABSTRACT

The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.


Subject(s)
Bacillus megaterium , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Catalysis , Heme , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
11.
Int J Biol Macromol ; 256(Pt 1): 128116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979765

ABSTRACT

Polyhydroxyalkanoates (PHA) are bioplastics which are well known as intracellular energy storage compounds and are produced in a large number of prokaryotic species. These bio-based inclusions are biodegradable, biocompatible and environmental friendly. Industrial production of, short chain and medium chain length PHA, involves the use of microorganisms and their enzymes. Priestia megaterium previously known as Bacillus megaterium is a well-recognized bacterium for producing short chain length PHA. This study focuses to characterize this bacterium for the production of medium chain length PHA, and a novel blend of both types of monomers having enhanced properties and versatile applications. Statistical analyses and simulations were used to demonstrate that cell dry weight can be derived as a function of OD600 and PHA content. Optimization of growth conditions resulted in the maximum PHA production as: 0. 05 g. g-x. H-1, where the rate of PHA production was 0.28 g L-1. H-1 and PHA concentration was 4.94 g. L-1. This study also demonstrated FTIR to be a semi quantitative tool for PHA production. Moreover, conversion of scl-PHA to mcl-PHA with reference to time intermissions using GC-FID are shown.


Subject(s)
Bacillus megaterium , Polyhydroxyalkanoates , Bacillus megaterium/metabolism , Fermentation , Glycerol/metabolism , Carbon/metabolism , Nitrogen/metabolism
12.
Microbiol Res ; 280: 127566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100951

ABSTRACT

Bacillus sensu lato were screened for their capacity to mineralize organic phosphorus (P) and promote plant growth, improving nitrogen (N) and P nutrition of soybean. Isolates were identified through Type Strain Genome Server (TYGS) and Average Nucleotide Identity (ANI). ILBB95, ILBB510 and ILBB592 were identified as Priestia megaterium, ILBB139 as Bacillus wiedmannii, ILBB44 as a member of a sister clade of B. pumilus, ILBB15 as Peribacillus butanolivorans and ILBB64 as Lysinibacillus sp. These strains were evaluated for their capacity to mineralize sodium phytate as organic P and solubilize inorganic P in liquid medium. These assays ranked ILBB15 and ILBB64 with the highest orthophosphate production from phytate. Rhizocompetence and plant growth promotion traits were evaluated in vitro and in silico. Finally, plant bioassays were conducted to assess the effect of the co-inoculation with rhizobial inoculants on nodulation, N and P nutrition. These bioassays showed that B. pumilus, ILBB44 and P. megaterium ILBB95 increased P-uptake in plants on the poor substrate of sand:vermiculite and also on a more fertile mix. Priestia megaterium ILBB592 increased nodulation and N content in plants on the sand:vermiculite:peat mixture. Peribacillus butanolivorans ILBB15 reduced plant growth and nutrition on both substrates. Genomes of ILBB95 and ILBB592 were characterized by genes related with plant growth and biofertilization, whereas ILBB15 was differentiated by genes related to bioremediation. Priestia megaterium ILBB592 is considered as nodule-enhancing rhizobacteria and together with ILBB95, can be envisaged as prospective PGPR with the capacity to exert positive effects on N and P nutrition of soybean plants.


Subject(s)
Aluminum Silicates , Bacillus megaterium , Bacillus , Glycine max , Phosphorus , Sand , Prospective Studies , Genomics
13.
J Agric Food Chem ; 71(51): 20762-20771, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103014

ABSTRACT

Mycotoxins are toxic secondary metabolites mainly produced by filamentous fungal species that commonly contaminate food and feed. Aflatoxin B1 (AFB1) is extremely toxic and seriously threatens the health of humans and animals. In this work, the Bacillus megaterium HNGD-A6 was obtained and showed a 94.66% removal ability of AFB1 by employing extracellular enzymes as the degrading active substance. The degradation products were P1 (AFD1, C16H14O5) and P2 (C14H16N2O2), and their toxicity was greatly reduced compared to that of AFB1. The AttM gene was mined by BlastP comparison and successfully expressed in Escherichia coli BL21. AttM could degrade 86.78% of AFB1 at pH 8.5 and 80 °C, as well as 81.32% of ochratoxin A and 67.82% of zearalenone. The ability of AttM to degrade a wide range of toxins and its resistance to high temperatures offer the possibility of its use in food or feed applications.


Subject(s)
Bacillus megaterium , Mycotoxins , Zearalenone , Animals , Humans , Aflatoxin B1/toxicity , Bacillus megaterium/genetics , Zearalenone/metabolism
14.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958734

ABSTRACT

Approximately one-third of agricultural land worldwide is affected by salinity, which limits the productivity and sustainability of crop ecosystems. Plant-growth-promoting rhizobacteria (PGPR) are a potential solution to this problem, as PGPR increases crop yield through improving soil fertility and stress resistance. Previous studies have shown that Priestia megaterium ZS-3(ZS-3) can effectively help plants tolerate salinity stress. However, how ZS-3 regulates its metabolic adaptations in saline environments remains unclear. In this study, we monitored the metabolic rearrangement of compatibilisers in ZS-3 and combined the findings with genomic data to reveal how ZS-3 survives in stressful environments, induces plant growth, and tolerates stress. The results showed that ZS-3 tolerated salinity levels up to 9%. In addition, glutamate and trehalose help ZS-3 adapt to osmotic stress under low NaCl stress, whereas proline, K+, and extracellular polysaccharides regulate the osmotic responses of ZS-3 exposed to high salt stress. Potting experiments showed that applying the ZS-3 strain in saline and neutral soils could effectively increase the activities of soil acid phosphatase, urease, and invertase in both soils, thus improving soil fertility and promoting plant growth. In addition, strain ZS-3-GFP colonised the rhizosphere and leaves of Cinnamomum camphora well, as confirmed by confocal microscopy and resistance plate count analysis. Genomic studies and in vitro experiments have shown that ZS-3 exhibits a variety of beneficial traits, including plant-promoting, antagonistic, and other related traits (such as resistance to saline and heavy metal stress/tolerance, amino acid synthesis and transport, volatile compound synthesis, micronutrient utilisation, and phytohormone biosynthesis/regulatory potential). The results support that ZS-3 can induce plant tolerance to abiotic stresses. These data provide important clues to further reveal the interactions between plants and microbiomes, as well as the mechanisms by which micro-organisms control plant health.


Subject(s)
Bacillus megaterium , Salt Tolerance , Salt Tolerance/genetics , Ecosystem , Salt Stress , Soil/chemistry
15.
Ecotoxicol Environ Saf ; 267: 115657, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37924800

ABSTRACT

Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.


Subject(s)
Bacillus megaterium , Mustard Plant , Cadmium/toxicity , Plants , Salt Tolerance , Homeostasis , Soil , Soil Microbiology , Plant Roots
16.
Bioprocess Biosyst Eng ; 46(12): 1791-1799, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882827

ABSTRACT

This study investigates the effects of different strategies on poly(3-hydroxybutyrate)-P(3HB) production in a fed-batch bioreactor by Bacillus megaterium using candy industry effluent (CIE), sucrose, and rice parboiled water (RPW) as carbon sources. In biosynthesis, kinetic and stoichiometric parameters of substrate conversion into products and/or cells, productivity, instantaneous, and specific conversion rates were evaluated. The maximum concentration of P(3HB) was 4.00 g.L-1 (77% of the total dry mass) in 42 h of cultivation in minimal medium/RPW added with a carbon source based on CIE, demonstrating that the fed-batch provided an increase of approximately 22% in the polymer concentration and 32% in the overall productivity in relation to medium based on commercial sucrose. Fed-batch cultivation also had the advantage of avoiding the extra time required for inoculum preparation and sterilization of the bioreactor during the batch, which thereby increased the overall industrial importance of the process. Effluents from the candy, confectionery, and/or rice parboiling industries can be used as alternative substrates for P(3HB) production at a low cost.


Subject(s)
Bacillus megaterium , 3-Hydroxybutyric Acid , Carbon , Polyesters , Bioreactors , Sucrose , Hydroxybutyrates
17.
Appl Microbiol Biotechnol ; 107(24): 7581-7599, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801099

ABSTRACT

Resveratrol (RES) is a secondary metabolite synthesized by plants in response to environmental stress and pathogen infection, which is of great significance for the industrial production of RES by fermentation culture. In this study, we aimed to explore the biosynthesis pathway of RES and its key enzymes in the Priestia megaterium PH3, which was isolated and screened from peanut fruit. Through Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, we quantified the RES content and distribution in the culture medium and determined that Priestia megaterium PH3 mainly secreted RES extracellularly. Furthermore, the highest production of RES was observed in YPD, yielding an impressive 127.46 ± 6.11 µg/L. By optimizing the fermentation conditions, we achieved a remarkable RES yield of 946.82 ± 24.74 µg/L within just 2 days, which represents the highest reported yield for a natural isolate produced in such a short time frame. Our investigation revealed that the phenylpropane pathway is responsible for RES synthesis in this bacterium, with cinnamate 4-hydroxylase (C4H) identified as the main rate-limiting enzyme. Overall, our findings highlight the robust RES production capabilities of Priestia megaterium PH3, offering novel insights and potential applications for bacterial fermentation in RES production. KEY POINTS: • RES synthesized by the bacterium was confirmed through the phenylpropane pathway. • The key rate-limiting enzyme for biosynthesis-RES is C4H. • RES reached 946.82 ± 24.74 µg/L after fermentation for 2 days.


Subject(s)
Bacillus megaterium , Resveratrol/metabolism , Fermentation , Mass Spectrometry , Bacillus megaterium/metabolism , Secondary Metabolism
18.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762528

ABSTRACT

Potassium-solubilizing bacteria are an important microbial group that play a critical role in releasing mineral potassium from potassium-containing minerals, e.g., potassium feldspar. Their application may reduce eutrophication caused by overused potassium fertilizers and facilitate plants to utilize environmental potassium. In this study, a high-efficiency potassium-solubilizing bacterium, named NK851, was isolated from the Astragalus sinicus rhizosphere soil. This bacterium can grow in the medium with potassium feldspar as the sole potassium source, releasing 157 mg/L and 222 mg/L potassium after 3 days and 5 days of incubation, respectively. 16S rDNA sequencing and cluster analysis showed that this strain belongs to Priestia megaterium. Genome sequencing further revealed that this strain has a genome length of 5,305,142 bp, encoding 5473 genes. Among them, abundant genes are related to potassium decomposition and utilization, e.g., the genes involved in adherence to mineral potassium, potassium release, and intracellular trafficking. Moreover, the strong potassium-releasing capacity of NK851 is not attributed to the acidic pH but is attributed to the extracellular potassium feldspar-binding proteins, such as the elongation factor TU and the enolase that contains potassium feldspar-binding cavities. This study provides new information for exploration of the bacterium-mediated potassium solubilization mechanisms.


Subject(s)
Astragalus Plant , Bacillus megaterium , Potassium , Aluminum Silicates , Potassium Compounds
19.
Food Res Int ; 172: 113202, 2023 10.
Article in English | MEDLINE | ID: mdl-37689949

ABSTRACT

Milk-clotting enzyme (MCE) is a crucial active agent in cheese making. It is necessary to find traditional MCE substitutes due to the limited production of traditional MCE (e.g., calf rennet) and increased cheese consumption. Bacillus megaterium strain LY114 with good milk-clotting activity (MCA) (448 SU/mL) and a high MCA/proteolytic activity (PA) ratio (6.0) was isolated and identified from agricultural soil in Laiyang (Shandong, China) through 16S rRNA sequencing of 45 strains. The Bacillus megaterium LY114 MCE had a remarkable specific activity (7532 SU/mg) and displayed a 4.83-fold purification yield with 34.17% recovery through ammonium sulfate fractionation and DEAE-Sepharose Fast Flow. The purified LY114 MCE was a metalloprotease with a molecular weight of 30 kDa. LY114 MCE was stable at pH 5.0-7.0 and temperature <40 °C. The highest MCA appeared at a substrate pH of 5.5 with 30 mM CaCl2. The Michaelis constant (Km) and maximal velocity (Vm) for casein were 0.31 g/L and 14.16 µmol/min, respectively. LY114 MCE preferred to hydrolyze α-casein (α-CN) rather than ß-casein (ß-CN) and had unique α-CN, ß-CN and κ-casein (κ-CN) cleavage sites. LY114 MCE hydrolyzed casein to generate significantly different peptides compared with calf rennet and fungal MCE as determined by SDS-PAGE analysis. Chemical index analysis and sensory evaluation confirmed the usefulness of LY114 MCE in cheese making. LY114 MCE had the potential to be used in dairy processing and enriched traditional MCE substitutes.


Subject(s)
Bacillus megaterium , Cheese , Caseins , RNA, Ribosomal, 16S/genetics
20.
Ecotoxicol Environ Saf ; 264: 115442, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37672938

ABSTRACT

Polyamines (PAs) are small aliphatic nitrogenous bases with strong biological activity that participate in plant stress response signaling and the alleviation of damage from stress. Herein, the effects of the PA-producing bacterium Bacillus megaterium N3 and PAs on the immobilization of Cd and inhibition of Cd absorption by spinach and the underlying mechanisms were studied. A solution test showed that strain N3 secreted spermine and spermidine in the presence of Cd. Both strain N3 and the PAs (spermine+spermidine) immobilized Cd and increased the pH of the solution. Untargeted metabolomics results showed that strain N3 secreted PAs, N1-acetylspermidine, 3-indolepropionic acid, indole-3-acetaldehyde, cysteinyl-gamma-glutamate, and choline, which correlated with plant growth promotion and Cd immobilization. A pot experiment showed that rhizosphere soil inoculation with strain N3 and PAs improved spinach dry weight and reduced spinach Cd absorption compared with the control. These positive effects were likely due to the increase in rhizosphere soil pH and NH4+-N and PA contents, which can be attributed primarily to Cd immobilization. Moreover, inoculation with strain N3 more effectively inhibited the absorption of Cd by spinach than spraying PAs, mainly because strain N3 enabled a better relative abundance of bacteria (Microvirga, Pedobacter, Bacillus, Brevundimonas, Pseudomonas, Serratia, Devosid, and Aminobacter), that have been reported to have the ability to resist heavy metals and produce PAs. Strain N3 regulated the structure of rhizosphere functional bacterial communities and inhibited Cd uptake by spinach. These results provide a theoretical basis for the prevention of heavy metal absorption by vegetables using PA-producing bacteria.


Subject(s)
Bacillus megaterium , Polyamines , Spermidine/pharmacology , Spermine , Cadmium/toxicity , Spinacia oleracea , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...