Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Open Vet J ; 14(1): 144-153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633157

ABSTRACT

Background: A commercially significant species in the aquaculture sector globally, particularly in Egypt, is Litopenaeus vannamei. Aim: The experiment's objective was to ascertain how Sanolife PRO-F impacted the growth, water quality, immunological response, and intestinal morphometry of L. vannamei. Methods: In the current investigation, which lasted 12 weeks, Sanolife PRO-F was administered to shrimp post-larvae at diet doses of 0 (control), 1 (group one), 2 (group two), and 3 (group three) g/kg diet, respectively. Each experimental group had three repetitions. Results: In the current study, shrimp fed on probiotic-treated diets showed a considerable improvement in growth performance measures and survival rate, and the nonspecific immune response was also enhanced. Shrimp fed probiotic diets had longer and more intestinal villi overall. Shrimp fed on the G2 and G3 diets showed no appreciable differences in growth or intestinal morphology. With the G2 and G3 diet, the water had lower concentrations of nitrite and ammonia. Conclusion: The study's findings indicate that Sanolife PRO-F treatment at 2-3 g/kg feed promotes the growth of shrimp, immunological response, gut health and function, and water quality.


Subject(s)
Bacillus licheniformis , Bacillus pumilus , Penaeidae , Probiotics , Animals , Bacillus subtilis , Water Quality , Immunity, Innate , Penaeidae/physiology , Probiotics/pharmacology
2.
J Microencapsul ; 41(3): 170-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38469757

ABSTRACT

The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.


Subject(s)
Bacillus pumilus , Indoleacetic Acids , Microspheres , Alginates , Starch , Water
3.
Braz J Microbiol ; 55(2): 1507-1519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468117

ABSTRACT

Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.


Subject(s)
Bacillus pumilus , Biodegradation, Environmental , Seawater , Sodium Dodecyl Sulfate , Staphylococcus saprophyticus , Sodium Dodecyl Sulfate/metabolism , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Bacillus pumilus/isolation & purification , Bacillus pumilus/classification , Staphylococcus saprophyticus/genetics , Staphylococcus saprophyticus/isolation & purification , Staphylococcus saprophyticus/metabolism , Staphylococcus saprophyticus/classification , Seawater/microbiology , Surface-Active Agents/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Water Pollutants, Chemical/metabolism , Wastewater/microbiology
4.
Plant Cell Physiol ; 65(5): 748-761, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38372612

ABSTRACT

Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacillus pumilus , Gene Expression Regulation, Plant , Peptidoglycan , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Peptidoglycan/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Bacillus pumilus/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Mutation , Plant Immunity
5.
Environ Sci Pollut Res Int ; 31(7): 10609-10620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198091

ABSTRACT

In this study, the addition of γ-aminobutyric acid (GABA), Bacillus pumilus, or both, was found to enhance rice growth and yield while significantly decreasing arsenic (As) accumulation in Oryza sativa rice tissues. GABA emerged as a regulator of iron (Fe) homeostasis, acting as a signaling modulator that influenced phytosiderophore secretions in the plant. Meanwhile, B. pumilus directly increased Fe levels through siderophore production, promoting the development of Fe-rich rice plants. Subsequently, Fe competed with As uptake at the root surface, leading to decreased As levels and translocation to the grains. Furthermore, the addition of GABA and B. pumilus optimized rice indole-3 acetic acid (IAA) contents, thereby adjusting cell metabolite balance under As stress. This adjustment results in low malondialdehyde (MDA) contents in the leaves and roots during the early and late vegetative phases, effectively reducing oxidative stress. When added to As-contaminated soil, GABA and B. pumilus effectively maintained endogenous GABA levels and exhibited low ROS generation, similar to normal soil. Concurrently, GABA and B. pumilus significantly downregulated the activity of OsLsi1, OsLsi2, and OsABCC1 in roots, reducing As uptake through roots, shoots, and grains, respectively. These findings suggest that GABA and B. pumilus additions impede As translocation through grains, ultimately enhancing rice productivity under As stress.


Subject(s)
Arsenic , Bacillus pumilus , Oryza , Soil Pollutants , Arsenic/analysis , Plant Roots/metabolism , gamma-Aminobutyric Acid/metabolism , Soil , Soil Pollutants/analysis
6.
Probiotics Antimicrob Proteins ; 16(2): 531-540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36995549

ABSTRACT

The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.


Subject(s)
Bacillus pumilus , Bacillus , Probiotics , Cattle , Animals , Mice , Bacillus pumilus/genetics , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology
7.
J Proteomics ; 292: 105047, 2024 02 10.
Article in English | MEDLINE | ID: mdl-37981008

ABSTRACT

The wide distribution of laccases in nature makes them involved in different biological processes. However, little information is known about how laccase participates in the defense machinery of bacteria against oxidative stress. The present study aimed to elucidate the oxidative stress response mechanism of Bacillus pumilus ZB1 and the functional role of bacterial laccase in stress defense. The oxidative stress caused by methyl methanesulfonate (MMS) significantly induced laccase activity and its transcript level. The morphological analysis revealed that the defense of B. pumilus ZB1 against oxidative stress was activated. Based on the proteomic study, 114 differentially expressed proteins (DEPs) were up-regulated and 79 DEPs were down-regulated. In COG analysis, 66.40% DEPs were classified into the category "Metabolism". We confirmed that laccase was up-regulated in response to MMS stress and its functional annotation was related to "Secondary metabolites biosynthesis, transport and catabolism". Based on protein-protein interaction prediction, two up-regulated DEPs (YcnJ and GabP) showed interaction with laccase and contributed to the formation of laccase stability and adaptability. The overexpressed laccase might improve the antioxidative property of B. pumilus ZB1. These findings provide an insight and the guidelines for better exploitation of bioremediation using bacterial laccase. SIGNIFICANCE: Bacillus pumilus is a gram-positive bacterium that has the potential for many applications, such as bioremediation. The expression of bacterial laccase is significantly influenced by oxidative stress, while the underlying mechanism of laccase overexpression in bacteria has not been fully studied. Elucidation of the biological process may benefit the bioremediation using bacteria in the future. In this study, the differentially expressed proteins were analyzed using a TMT-labeling proteomic approach when B. pumilus was treated with methyl methanesulfonate (MMS). Reactive oxygen species induced by MMS activated the secondary metabolites biosynthesis, transport, and catabolism in B. pumilus, including laccase overexpression. Moreover, the simultaneously up-regulated YcnJ and GabP may benefit the synthesis and the stability of laccase, then improve the antioxidative property of B. pumilus against environmental stress. Our findings advance the understanding of the adaptive mechanism of B. pumilus to environmental conditions.


Subject(s)
Bacillus pumilus , Bacillus pumilus/metabolism , Laccase/metabolism , Proteomics , Methyl Methanesulfonate/metabolism , Bacterial Proteins/metabolism , Oxidative Stress
8.
Bioresour Technol ; 394: 130240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160849

ABSTRACT

Nitrate accumulation is an important issue that affects animal health and causes eutrophication. This study combined biodegradable polymers with degrading bacteria to lead to high denitrification efficiency. The results showed polycaprolactone had the highest degradation and carbon release rate (0.214 mg/g∙d) and nitrogen removal was greatest when the Bacillus pumilus and Halomonas venusta ratio was 1:2. When the hydraulic retention time was extended to 12 h, the nitrate removal rate for H. venusta with B. pumilus and polycaprolactone increased by 48 %. Furthermore, the group with B. pumilus contained more Proteobacteria (77.34 %) and denitrifying functional enzymes than the group without B. pumilus. These findings indicated B.pumilus can enhance the degradation of biodegradable polymers especially polycaprolactone to improve the denitrification of the aerobic denitrification bacteria H.venusta when treating maricultural wastewater.


Subject(s)
Bacillus pumilus , Denitrification , Bacillus pumilus/metabolism , Nitrates , Polymers , Bioreactors/microbiology , Carbon/metabolism , Nitrogen
9.
Biotechnol Appl Biochem ; 70(6): 2052-2068, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731306

ABSTRACT

Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Bacillus pumilus , Lung Neoplasms , Humans , Cyanides/pharmacology , Cyanides/therapeutic use , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Apoptosis , Antineoplastic Agents/pharmacology , Cell Proliferation , Lung Neoplasms/metabolism
10.
Microb Cell Fact ; 22(1): 163, 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37635205

ABSTRACT

BACKGROUND: Global transcription machinery engineering (gTME) is an effective approach employed in strain engineering to rewire gene expression and reshape cellular metabolic fluxes at the transcriptional level. RESULTS: In this study, we utilized gTME to engineer the positive transcription factor, DegU, in the regulation network of major alkaline protease, AprE, in Bacillus pumilus. To validate its functionality when incorporated into the chromosome, we performed several experiments. First, three negative transcription factors, SinR, Hpr, and AbrB, were deleted to promote AprE synthesis. Second, several hyper-active DegU mutants, designated as DegU(hy), were selected using the fluorescence colorimetric method with the host of the Bacillus subtilis ΔdegSU mutant. Third, we integrated a screened degU(L113F) sequence into the chromosome of the Δhpr mutant of B. pumilus SCU11 to replace the original degU gene using a CRISPR/Cas9 system. Finally, based on transcriptomic and molecular dynamic analysis, we interpreted the possible mechanism of high-yielding and found that the strain produced alkaline proteases 2.7 times higher than that of the control strain (B. pumilus SCU11) in LB medium. CONCLUSION: Our findings serve as a proof-of-concept that tuning the global regulator is feasible and crucial for improving the production performance of B. pumilus. Additionally, our study established a paradigm for gene function research in strains that are difficult to handle.


Subject(s)
Bacillus pumilus , Peptide Hydrolases , Peptide Hydrolases/genetics , Transcription Factors/genetics , Bacillus pumilus/genetics , Gene Expression Regulation , Bacillus subtilis
11.
Microb Cell Fact ; 22(1): 152, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573310

ABSTRACT

BACKGROUND: Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS: In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION: Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.


Subject(s)
Bacillus pumilus , Copper , Bacillus subtilis/genetics , Egypt , Indian Ocean , Adsorption , Kinetics , Hydrogen-Ion Concentration , Biomass
12.
Sci Total Environ ; 900: 165720, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37482353

ABSTRACT

Aflatoxins are a class of highly toxic mycotoxins. Aflatoxin M1 (AFM1) is hydroxylated metabolite of aflatoxin B1, having comparable toxicity, which is more commonly found in milk. In this study, the whole genome sequencing of Bacillus pumilus E-1-1-1 isolated from feces of 38 kinds of animals, having aflatoxin M1 degradation ability was conducted. Bacterial genome sequencing indicated that a total of 3445 sequences were finally annotated on 23 different cluster of orthologous groups (COG) categories. Then, the potential AFM1 degradation proteins were verified by proteomics; the properties of these proteins were further explored, including protein molecular weight, hydrophobicity, secondary structure prediction, and three-dimensional structures. Bacterial genome sequencing combined with proteomics showed that eight genes were the most capable of degrading AFM1 including three catalases, one superoxide dismutase, and four peroxidases to clone. These eight genes with AFM1 degrading capacity were successfully expressed. These results indicated that AFM1 can be degraded by Bacillus pumilus E-1-1-1 protein and the most degrading proteins were oxidoreductases.


Subject(s)
Aflatoxins , Bacillus pumilus , Animals , Aflatoxin M1/analysis , Aflatoxin M1/metabolism , Aflatoxin M1/toxicity , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Proteomics , Aflatoxins/analysis , Aflatoxins/metabolism , Milk/chemistry , Genomics , Food Contamination/analysis
13.
World J Microbiol Biotechnol ; 39(10): 257, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37474882

ABSTRACT

The typical vitamin C mixed-fermentation process's second stage involves bioconversion of L-sorbose to 2-keto-L-gulonic acid (2-KLG), using a consortium comprising Ketogulonicigenium vulgare and Bacillus spp. (as helper strain). The concentration of the helper strain in the co-fermentation system was closely correlated with K. vulgare cell growth and 2-KLG accumulation. To understand the tolerance and response of the helper strain and K. vulgare to 2-KLG, 2-KLG was added to the single-strain system of Bacillus pumilus and K. vulgare and the basic physiological and biochemical properties were determined. In this study, the addition of 1 mg/mL 2-KLG reduced the number of viable and spore cells, lowered the levels of intracellular reactive oxygen species (ROS), enhanced the intra- and extracellular total antioxidant capacity (T-AOC), and significantly affected the B. pumilus sporulation-related genes expression levels. Furthermore, the addition of 1 mg/mL 2-KLG increased the intracellular ROS levels, decreased the intra- and extracellular T-AOC, and downregulated the antioxidant enzyme-related genes and 2-KLG production enzyme-related genes of K. vulgare. These results suggested that 2-KLG could induce acidic and oxidative stress in B. pumilus and K. vulgare, which could be a guide for a greater understanding of the interaction between the microorganisms.


Subject(s)
Bacillus pumilus , Bacillus pumilus/genetics , Antioxidants/pharmacology , Reactive Oxygen Species , Ascorbic Acid
14.
Arch Microbiol ; 205(8): 274, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37401995

ABSTRACT

Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms. To remediate the matter in question, the applicability of a biosurfactant produced from the mangrove bacterium Bacillus pumilus NITDID1 (Accession No. KY678446.1) is reported here. The structural characterization of the produced biosurfactant revealed it to be a lipopeptide and has been identified as pumilacidin through FTIR, NMR, and MALDI-TOF MS. The critical micelle concentration of pumilacidin was 120 mg/L, and it showed a wide range of stability in surface tension reduction experiments under various environmental conditions and exhibited a high emulsification index of as much as 90%. In a simulated setup of engine oil-contaminated sand, considerable oil recovery (39.78%) by this biosurfactant was observed, and upon being added to a microbial consortium, there was an appreciable enhancement in the degradation of the used engine oil. As far as the heavy metal removal potential of biosurfactant is concerned, as much as 100% and 82% removal was observed for lead and cadmium, respectively. Thus, in a nutshell, the pumilacidin produced from Bacillus pumilus NITDID1 holds promise for multifaceted applications in the field of environmental remediation.


Subject(s)
Bacillus pumilus , Environmental Pollutants , Petroleum , Biodegradation, Environmental , Lipopeptides/chemistry , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Cadmium , Surface-Active Agents/chemistry , Petroleum/metabolism
15.
Environ Res ; 231(Pt 1): 116089, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37172678

ABSTRACT

Seed priming is an effective and novel technique and the use of eco-friendly biological agents improves the physiological functioning in the vegetative stage of plants. This procedure ensures productivity and acquired stress resilience in plants against adverse conditions without contaminating the environment. Though the mechanisms of bio-priming-triggered alterations have been widely explained under induvial stress conditions, the interaction of combined stress conditions on the defense system and the functionality of photosynthetic apparatus in the vegetative stage after the inoculation to seeds has not been fully elucidated. After Bacillus pumilus inoculation to wheat seeds (Triticum aestivum), three-week-old plants were hydroponically exposed to the alone and combination of salt (100 mM NaCl) and 200 µM sodium arsenate (Na2HAsO4·7H2O, As) for 72 h. Salinity and As pollutant resulted in a decline in growth, water content, gas exchange parameters, fluorescence kinetics and performance of photosystem II (PSII). On the other hand, the seed inoculation against stress provided the alleviation of relative growth rate (RGR), relative water content (RWC) and chlorophyll fluorescence. Since there was no effective antioxidant capacity, As and/or salinity caused the induction of H2O2 accumulation and thiobarbituric acid reactive substances content (TBARS) in wheat . The inoculated seedlings had a high activity of superoxide dismutase (SOD) under stress. B. pumilis decreased the NaCl-induced toxic H2O2 levels by increasing peroxidase (POX) and enzymes/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle. In the presence of As exposure, the inoculated plants exhibited an induction in CAT activity. On the other hand, for H2O2 scavenging, the improvement in the AsA-GSH cycle was observed in bacterium priming plants plus the combined stress treatment. Since B. pumilus inoculation reduced H2O2 levels against all stress treatments, lipid peroxidation subsequently decreased in wheat leaves. The findings obtained from our study explained that the seed inoculation with B. pumilus provided an activation in the defense system and protection in growth, water status, and gas exchange regulation in wheat plants against the combination of salt and As.


Subject(s)
Arsenic , Bacillus pumilus , Antioxidants/pharmacology , Triticum , Sodium Chloride/toxicity , Arsenic/pharmacology , Water , Hydrogen Peroxide , Fluorescence , Kinetics , Chlorophyll/pharmacology
16.
J Sci Food Agric ; 103(11): 5588-5599, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37066671

ABSTRACT

BACKGROUND: Solid-state fermentation (SSF) is a general approach for preparing food and feed, which not only improves nutrition but also provides prebiotics and metabolites. Although many studies have been conducted on the effects of fermentation on feed substrate, the dynamics of microbiota and metabolites in SSF remain unclear. Here, high-throughput sequencing combined with gas chromatography-quadrupole time-of-flight mass spectrometry was used to evaluate the dynamic changes of solid fermented soybean meal and corn mixed matrix inoculated with Bacillus pumilus and Limosilactobacillus fermentum. RESULTS: Generally, inoculated bacteria rapidly proliferated, accompanied by the degradation of macromolecular proteins and an increase in the content of small peptides, trichloroacetic acid-soluble protein, free amino acids and organic acids. Bacillus, Lactobacillus and Enterococcus dominated the whole fermentation process. 389 non-volatile metabolites and 182 volatile metabolites were identified, including amino acids, organic acids, ketones, aldehydes, furans and pyrazine. Typical non-volatile metabolites such as lactic acid, 4-aminobutanoic acid, l-glutamic acid, d-arabinose and volatile metabolites such as 4-ethyl-2-methoxyphenol, 4-penten-2-ol, 2-pentanone, 2-ethylfuran, 2-methylhexanoic acid and butanoic acid-ethyl ester were significantly increased in two-stage solid fermentation. However, some adverse metabolites were also produced, such as oxalic acid, acetic acid, tyramine and n-butylamine, which may affect the quality of fermented feed. Sixteen genera were significantly correlated with differential non-volatile metabolites, while 11 genera were significantly correlated with differential volatile metabolites. CONCLUSION: These results characterized the dynamic changes in the process of two-stage solid-state fermentation with Bacillus pumilus and Limosilactobacillus fermentum and provided a potential reference for additional intervention on improving the effectiveness and efficiency of solid-state fermentation of feed in the future. © 2023 Society of Chemical Industry.


Subject(s)
Bacillus pumilus , Limosilactobacillus fermentum , Fermentation , Bacillus pumilus/metabolism , Zea mays/metabolism , Flour , Bacteria/metabolism , Amino Acids/metabolism
17.
Funct Integr Genomics ; 23(2): 124, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37055595

ABSTRACT

The aim of the present study was to evaluate the effects of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 on the expressions of spleen genes in weanling Jintang black goats. Bacillus amyloliquefaciens fsznc-06 (BA-treated group) and Bacillus pumilus fsznc-09 (BP-treated group) were directly fed to goats, and the spleens were harvested for transcriptome analysis. The KEGG pathway analysis showed that the differentially expressed genes (DEGs) in BA-treated vs CON group were mainly involved in digestive system and immune system, while those in BP-treated vs CON group were mainly involved in immune system, and those in BA-treated vs BP-treated group were mainly involved in digestive system. In conclusion, Bacillus amyloliquefaciens fsznc-06 might promote the expressions of genes related to immune system and digestive system, reduce the expressions of disease genes related to digestive system and might promote mutual accommodation of some immune genes in weanling black goat. Bacillus pumilus fsznc-09 might promote the expressions of genes related to immune system and mutual accommodation of some immune genes in weanling black goat. Bacillus amyloliquefaciens fsznc-06 has advantages over Bacillus pumilus fsznc-09 in promoting the expressions of genes related to digestive system and mutual accommodation of some immune genes.


Subject(s)
Bacillus amyloliquefaciens , Bacillus pumilus , Animals , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/metabolism , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Spleen , Goats/genetics , Gene Expression Profiling , Transcriptome
18.
Plant Dis ; 107(10): 3057-3063, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36916837

ABSTRACT

Root-knot nematodes (RKNs) are highly specialized parasites that cause significant yield losses worldwide. In this study, we isolated Bacillus pumilus strain S1-10 from the rhizosphere soil of Zingiber officinale Rosc. plants and evaluated its fumigant activity against Meloidogyne incognita. S1-10 exhibited a strong repellent effect on second-stage juveniles (J2s) of M. incognita, and in vitro assays indicated that S1-10 volatile organic compounds (VOCs) suppressed J2 activity and egg hatching. Under greenhouse conditions, 71 and 79% reductions of nematodes and eggs were detected on plants treated with S-10 VOCs compared with controls. Ten VOCs were identified through gas chromatography and mass spectrometry (GC-MS), of which 2-(methylamino)-ethanol (2-ME) had strong fumigant activity against J2s of M. incognita, with an LC50 value of 1.5 mM at 12 h. These results indicate that S1-10 represents a potential novel biocontrol agent for RKNs.


Subject(s)
Bacillus pumilus , Pesticides , Tylenchoidea , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Ethanol
19.
BMC Vet Res ; 19(1): 41, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36759839

ABSTRACT

BACKGROUND: In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS: The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1ß, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCß and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS: Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.


Subject(s)
Bacillus pumilus , Chickens , Animals , Salmonella enteritidis , Intestines , Intestinal Mucosa/metabolism , Animal Feed/analysis , Diet/veterinary , Dietary Supplements
20.
J Basic Microbiol ; 63(6): 604-621, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36670089

ABSTRACT

Intermingled uninfected and root-knot nematode-infected tomato plants are commonly observed under protected cultivation. To understand the role of rhizobacteria underlying the susceptibility to nematode infectivity in these tomato plants, 36 rhizobacteria (18 from each type) with morphologically distinct colony characteristics were isolated from the rhizosphere of uninfected and root-knot nematode-infected tomato plants. The in vitro nematicidal potential of rhizobacteria from the uninfected rhizosphere was significantly higher than that from the infested rhizosphere. The three most effective antagonists were identified as Microbacterium laevaniformans, Staphylococcus kloosii, Priestia aryabhattai from root-knot-nematode-infected tomato rhizosphere and Staphylococcus sciuri, Bacillus pumilus, and Priestia megaterium from the rhizosphere of uninfected tomato. Volatile organic compounds from these rhizobacteria were characterized. Except for S. kloosi, the soil drenching with other rhizobacteria significantly reduced juvenile penetration (>60%) in tomato roots. Furthermore, the application of a single or consortium of these rhizobacteria affected nematode reproduction in tomato. Four consortia of rhizobacteria (S. sciuri + B. pumilus + P. megaterium), (B. pumilus + P. megaterium), (S. sciuri + B. pumilus), and (S. sciuri + P. megaterium) from uninfested rhizosphere and two consortia (M. laevaniformans + P. aryabhattai), (M. laevaniformans + S. kloosii + P. aryabhattai) from infested rhizosphere (IRh) effectively reduced M. incognita reproduction and considerably enhanced plant growth and yield in tomato. The nematicidal efficacy, however, decreased when S. kloosii was applied in the consortium. These distinctive effects illustrate how the plant susceptibility to nematode infectivity is modulated under natural conditions.


Subject(s)
Bacillus megaterium , Bacillus pumilus , Solanum lycopersicum , Tylenchoidea , Animals , Tylenchoidea/microbiology , Antinematodal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...