Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.261
Filter
1.
Sci Rep ; 14(1): 12651, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825618

ABSTRACT

Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.


Subject(s)
Cold Temperature , Disinfectants , Disinfection , Hydrogen Peroxide , Peracetic Acid , Disinfectants/pharmacology , Disinfection/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Sulfates/pharmacology , Bacillus subtilis/drug effects , Potassium Compounds/pharmacology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Poliovirus/drug effects
2.
J Oleo Sci ; 73(5): 787-799, 2024.
Article in English | MEDLINE | ID: mdl-38692900

ABSTRACT

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
3.
Acta Biochim Pol ; 71: 11999, 2024.
Article in English | MEDLINE | ID: mdl-38721306

ABSTRACT

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Subject(s)
Antifungal Agents , Bacillus subtilis , Candida glabrata , Cell Membrane Permeability , Lipopeptides , Microbial Sensitivity Tests , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Bacillus subtilis/drug effects , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Humans , Cell Membrane/drug effects , Cell Membrane/metabolism
4.
Commun Biol ; 7(1): 588, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755264

ABSTRACT

Although a low temperature limit for life has not been established, it is thought that there exists a physical limit imposed by the onset of intracellular vitrification, typically occurring at ~-20 °C for unicellular organisms. Here, we show, through differential scanning calorimetry, that molar concentrations of magnesium perchlorate can depress the intracellular vitrification point of Bacillus subtilis cells to temperatures much lower than those previously reported. At 2.5 M Mg(ClO4)2, the peak vitrification temperature was lowered to -83 °C. Our results show that inorganic eutectic salts can in principle maintain liquid water in cells at much lower temperatures than those previously claimed as a lower limit to life, raising the prospects of active biochemical processes in low temperature natural settings. Our results may have implications for the habitability of Mars, where perchlorate salts are pervasive and potentially other terrestrial and extraterrestrial, cryosphere environments.


Subject(s)
Bacillus subtilis , Perchlorates , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Perchlorates/chemistry , Cold Temperature , Vitrification , Calorimetry, Differential Scanning
5.
Biomater Adv ; 161: 213882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710121

ABSTRACT

Metallic lattice scaffolds are designed to mimic the architecture and mechanical properties of bone tissue and their surface compatibility is of primary importance. This study presents a novel surface modification protocol for metallic lattice scaffolds printed from a superelastic Ti-Zr-Nb alloy. This protocol consists of dynamic chemical etching (DCE) followed by silver nanoparticles (AgNP) decoration. DCE, using an 1HF + 3HNO3 + 12H2O23% based solution, was used to remove partially-fused particles from the surfaces of different as-built lattice structures (rhombic dodecahedron, sheet gyroid, and Voronoi polyhedra). Subsequently, an antibacterial coating was synthesized on the surface of the scaffolds by a controlled (20 min at a fixed volume flowrate of 500 mL/min) pumping of the functionalization solutions (NaBH4 (2 mg/mL) and AgNO3 (1 mg/mL)) through the porous structures. Following these treatments, the scaffolds' surfaces were found to be densely populated with Ag nanoparticles and their agglomerates, and manifested an excellent antibacterial effect (Ag ion release rate of 4-8 ppm) suppressing the growth of both E. coli and B. subtilis bacteria up to 99 %. The scaffold extracts showed no cytotoxicity and did not affect cell proliferation, indicating their safety for subsequent use as implants. A cytocompatibility assessment using MG-63 spheroids demonstrated good attachment, spreading, and active migration of cells on the scaffold surface (over 96 % of living cells), confirming their biotolerance. These findings suggest the promise of this surface modification approach for developing superelastic Ti-Zr-Nb scaffolds with superior antibacterial properties and biocompatibility, making them highly suitable for bone implant applications.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Silver , Surface Properties , Tissue Scaffolds , Titanium , Zirconium , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tissue Scaffolds/chemistry , Zirconium/chemistry , Zirconium/pharmacology , Humans , Niobium/chemistry , Niobium/pharmacology , Lasers , Escherichia coli/drug effects , Alloys/chemistry , Alloys/pharmacology , Bacillus subtilis/drug effects , Powders , Materials Testing , Cell Proliferation/drug effects
6.
Sci Rep ; 14(1): 12496, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821995

ABSTRACT

Designing materials capable of disinfecting water without releasing harmful by-products is an ongoing challenge. Here, we report a novel polycationic sponge material synthesized from chitosan derivatives and cellulose fibers, exhibiting antibacterial properties. The design of such material is based on three key principles. First, the formation of a highly porous structure through cryogelation for an extensive surface area. Second, the incorporation of cationic quaternary ammonium moieties onto chitosan to enhance bacterial adsorption and antibacterial activity. Lastly, the reinforcement of mechanical properties through integration of cellulose fibers. The presented sponge materials exhibit up to a 4-log (99.99%) reduction within 6 h against both gram-positive B. subtilis and gram-negative E. coli. Notably, QCHI90/Cell, with the highest surface charge, exhibits a 2-4.5 log reduction within 1 h of incubation time. The eco-friendly synthesis from water and readily available biomaterials, along with cost-effectiveness and simplicity, underscores its versatility and feasibility of upscaling. Together with its outstanding antibacterial activity, this macroporous biomaterial emerges as a promising candidate for water disinfection applications.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Chitosan , Escherichia coli , Water Purification , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Cellulose/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Chitosan/chemistry , Water Microbiology , Bacillus subtilis/drug effects , Porosity , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Adsorption
7.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791348

ABSTRACT

Hybrid nanomaterials have attracted considerable interest in biomedicine because of their fascinating characteristics and wide range of applications in targeted drug delivery, antibacterial activity, and cancer treatment. This study developed a gelatin-coated Titanium oxide/palladium (TiO2/Pd) hybrid nanomaterial to enhance the antibacterial and anticancer capabilities. Morphological and structural analyses were conducted to characterize the synthesized hybrid nanomaterial. The surface texture of the hybrid nanomaterials was examined by high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The FE-SEM image revealed the bulk of the spherically shaped particles and the aggregated tiny granules. Energy dispersive X-ray spectroscopy (EDS) revealed Ti, Pd, C, and O. X-ray diffraction (XRD) revealed the gelatin-coated TiO2/Pd to be in the anatase form. Fourier transform infrared spectroscopy examined the interactions among the gelatin-coated TiO2/Pd nanoparticles. The gelatin-coated TiO2/Pd nanomaterials exhibited high antibacterial activity against Escherichia coli (22 mm) and Bacillus subtilis (17 mm) compared to individual nanoparticles, confirming the synergistic effect. More importantly, the gelatin-coated TiO2/Pd hybrid nanomaterial exhibited remarkable cytotoxic effects on A549 lung cancer cells which shows a linear increase with the concentration of the nanomaterial. The hybrid nanomaterials displayed higher toxicity to cancer cells than the nanoparticles alone. Furthermore, the cytotoxic activity against human cancer cells was verified by the generation of reactive oxygen species and nuclear damage. Therefore, gelatin-coated TiO2/Pd nanomaterials have potential uses in treating cancer and bacterial infections.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Escherichia coli , Gelatin , Nanostructures , Palladium , Titanium , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Gelatin/chemistry , Palladium/chemistry , Palladium/pharmacology , Escherichia coli/drug effects , Nanostructures/chemistry , A549 Cells , Bacillus subtilis/drug effects , Microbial Sensitivity Tests , X-Ray Diffraction , Metal Nanoparticles/chemistry
8.
Environ Int ; 187: 108729, 2024 May.
Article in English | MEDLINE | ID: mdl-38735077

ABSTRACT

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Escherichia coli , Oxidative Stress , Anti-Bacterial Agents/pharmacology , Oxidative Stress/drug effects , Escherichia coli/drug effects , Bacillus subtilis/drug effects , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Tetracycline/pharmacology , Meropenem/pharmacology
9.
mSphere ; 9(5): e0076423, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38722162

ABSTRACT

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Microbial Sensitivity Tests , Staphylococcus aureus , Streptomyces , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Polyketides/pharmacology , Polyketides/metabolism , Glycosides/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Proteomics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA Gyrase/genetics , DNA Gyrase/metabolism
10.
PLoS One ; 19(4): e0300634, 2024.
Article in English | MEDLINE | ID: mdl-38669243

ABSTRACT

The flagellar motor proteins, MotA and MotB, form a complex that rotates the flagella by utilizing the proton motive force (PMF) at the bacterial cell membrane. Although PMF affects the susceptibility to aminoglycosides, the effect of flagellar motor proteins on the susceptibility to aminoglycosides has not been investigated. Here, we found that MotB overexpression increased susceptibility to aminoglycosides, such as kanamycin and gentamicin, in Bacillus subtilis without affecting swimming motility. MotB overexpression did not affect susceptibility to ribosome-targeting antibiotics other than aminoglycosides, cell wall-targeting antibiotics, DNA synthesis-inhibiting antibiotics, or antibiotics inhibiting RNA synthesis. Meanwhile, MotB overexpression increased the susceptibility to aminoglycosides even in the motA-deletion mutant, which lacks swimming motility. Overexpression of the MotB mutant protein carrying an amino acid substitution at the proton-binding site (D24A) resulted in the loss of the enhanced aminoglycoside-sensitive phenotype. These results suggested that MotB overexpression sensitizes B. subtilis to aminoglycosides in a motility-independent manner. Notably, the aminoglycoside-sensitive phenotype induced by MotB requires the proton-binding site but not the MotA/MotB complex formation.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Bacillus subtilis , Bacterial Proteins , Flagella , Bacillus subtilis/genetics , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Flagella/metabolism , Flagella/drug effects , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/genetics
11.
Sci Rep ; 14(1): 9733, 2024 04 28.
Article in English | MEDLINE | ID: mdl-38679643

ABSTRACT

Cyclotides are a type of defense peptide most commonly found in the Violaceae family of plants, exhibiting various biological activities. In this study, we focused on the Viola japonica as our research subject and conducted transcriptome sequencing and analysis using high-throughput transcriptomics techniques. During this process, we identified 61 cyclotides, among which 25 were previously documented, while the remaining 36 were designated as vija 1 to vija 36. Mass spectrometry detection showed that 21 putative cyclotides were found in the extract of V. japonica. Through isolation, purification and tandem mass spectrometry, we characterized and investigated the activities of five cyclotides. Our results demonstrated inhibitory effects of these cyclotides on the growth of Acinetobacter baumannii and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 4.2 µM and 2.1 µM, respectively. Furthermore, time killing kinetic assays revealed that cyclotides at concentration of 4 MICs achieved completely bactericidal effects within 2 h. Additionally, fluorescence staining experiments confirmed that cyclotides disrupt microbial membranes. Moreover, cytotoxicity studies showed that cyclotides possess cytotoxic effects, with IC50 values ranging from 0.1 to 3.5 µM. In summary, the discovery of new cyclotide sequences enhances our understanding of peptide diversity and the exploration of their activity lays the foundation for a deeper investigation into the mechanisms of action of cyclotides.


Subject(s)
Acinetobacter baumannii , Bacillus subtilis , Cyclotides , Microbial Sensitivity Tests , Viola , Cyclotides/pharmacology , Cyclotides/chemistry , Cyclotides/isolation & purification , Viola/chemistry , Acinetobacter baumannii/drug effects , Bacillus subtilis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
PLoS Biol ; 22(4): e3002589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683856

ABSTRACT

Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Wall , Peptidoglycan , Signal Transduction , Cell Wall/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan/biosynthesis , Polyisoprenyl Phosphates/metabolism , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Cell Membrane/metabolism
13.
J Mater Chem B ; 12(17): 4208-4216, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38595308

ABSTRACT

The primary focal point in the fabrication of microfiltration membranes revolves around mitigating issues of low permeability stemming from the initial design as well as countering biofouling tendencies. This work aimed to address these issues by synthesizing an antibacterial capsaicin derivative (CD), which was then grafted to the poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-polymethacrylic acid (P(VDF-CTFE)-g-PMAA) matrix polymer, resulting in an antibacterial polymer (PD). Notably, both CD and PD demonstrated low cytotoxicities. Utilizing PD, a microfiltration membrane (MA) was successfully prepared through non-solvent-induced phase inversion. The pore sizes of the MA membrane were mainly concentrated at around 436 nm, while the pure water flux of MA reached an impressive value of 62 ± 0.17 Lm-2 h-1 at 0.01 MPa. MA exhibited remarkable efficacy in eradicating both Gram-negative (E. coli) and Gram-positive bacteria (Bacillus subtilis) from its surface. Compared with M1 prepared from P(VDF-CTFE), MA exhibited a lower flux decay rate (41.00% vs. 76.03%) and a higher flux recovery rate (84.95% vs. 46.54%) after three cycles. Overall, this research represents a significant step towards the development of a microfiltration membrane with inherent stable anti-biofouling capability to enhance filtration.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Biofouling , Capsaicin , Escherichia coli , Membranes, Artificial , Biofouling/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Capsaicin/chemistry , Capsaicin/pharmacology , Bacillus subtilis/drug effects , Microbial Sensitivity Tests , Filtration , Surface Properties , Particle Size
14.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Article in English | MEDLINE | ID: mdl-38636260

ABSTRACT

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Laccase , Proteomics , Shiitake Mushrooms , Tetracycline , Laccase/metabolism , Laccase/genetics , Tetracycline/toxicity , Tetracycline/pharmacology , Coloring Agents/toxicity , Coloring Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Bacillus subtilis/drug effects , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology
15.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38678002

ABSTRACT

AIMS: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.


Subject(s)
Anti-Bacterial Agents , Indoles , Microbial Sensitivity Tests , Proton-Motive Force , Quinolines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolines/pharmacology , Quinolines/chemistry , Proton-Motive Force/drug effects , Indoles/pharmacology , Indoles/chemistry , Structure-Activity Relationship , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Dynamics Simulation , Acinetobacter baumannii/drug effects , Enterococcus faecalis/drug effects , Staphylococcus aureus/drug effects , Bacillus subtilis/drug effects
16.
J Hazard Mater ; 470: 134207, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593667

ABSTRACT

A unique fluorescent molecule (ND-S) was obtained from Eosin Y in two simple yet high yielding steps (1). ND-S has special metal ion sensing ability, such that it can selectively detect toxic Hg2+ present in very low concentration in aqueous solutions in the presence of other competing metal ions. The host-guest complexation is ratiometric and is associated with significant increase in fluorescence during the process. Isothermal titration calorimetry (ITC) experiments provided thermodynamic parameters related to interaction between ND-S and Hg2+. Using inductively coupled plasma mass spectrometry (ICP-MS), the Hg2+(aq) removal efficiency of ND-S was estimated to be 99.88%. Appreciable limit of detection (LOD = 7.4 nM) was observed. Other competing ions did not interfere with the sensing of Hg2+ by ND-S. The effects of external stimuli (temperature and pH) were studied. Besides, the complex (ND-M), formed by 1:1 coordination of ND-S and Hg2+ was found to be effective against the survival of Gram-positive bacteria (S. aureus and B. subtilis) with a high selectivity index. Moreover, bacterial cell death mechanism was studied systematically. Overall, we have shown the transformation of a toxic species (Hg2+), extracted from polluted water by a biocompatible sensor (ND-S), into an effective and potent antibacterial agent (ND-M).


Subject(s)
Anti-Bacterial Agents , Eosine Yellowish-(YS) , Fluorescent Dyes , Mercury , Staphylococcus aureus , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Eosine Yellowish-(YS)/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Mercury/analysis , Mercury/toxicity , Spectrometry, Fluorescence , Staphylococcus aureus/drug effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
17.
Mar Drugs ; 22(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667774

ABSTRACT

Five new biflorane-type diterpenoids, biofloranates E-I (1-5), and two new bicyclic diterpene glycosides, lemnaboursides H-I (6-7), along with the known lemnabourside, were isolated from the South China Sea soft coral Lemnalia bournei. Their chemical structures and stereochemistry were determined based on extensive spectroscopic methods, including time-dependent density functional theory (TDDFT) ECD calculations, as well as a comparison of them with the reported values. The antibacterial activities of the isolated compounds were evaluated against five pathogenic bacteria, and all of these diterpenes and diterpene glycosides showed antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 4 to 64 µg/mL. In addition, these compounds did not exhibit noticeable cytotoxicities on A549, Hela, and HepG2 cancer cell lines, at 20 µM.


Subject(s)
Anthozoa , Anti-Bacterial Agents , Bacillus subtilis , Diterpenes , Glycosides , Microbial Sensitivity Tests , Staphylococcus aureus , Anthozoa/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Animals , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Staphylococcus aureus/drug effects , Bacillus subtilis/drug effects , HeLa Cells , Cell Line, Tumor , Hep G2 Cells , Molecular Structure , A549 Cells , China
18.
Microb Pathog ; 190: 106604, 2024 May.
Article in English | MEDLINE | ID: mdl-38490458

ABSTRACT

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Subject(s)
Alternaria , Bacillus subtilis , Fungicides, Industrial , Lipopeptides , Nitriles , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/drug effects , Alternaria/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Fungicides, Industrial/pharmacology , Nitriles/pharmacology , Lipopeptides/pharmacology , RNA, Ribosomal, 16S/genetics , Hyphae/drug effects , Hyphae/growth & development , Mycelium/drug effects , Mycelium/growth & development , Peptides, Cyclic/pharmacology
19.
J Hazard Mater ; 470: 134132, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554510

ABSTRACT

The proliferation of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) caused by antibiotic abuse has raised concerns about the global infectious-disease crisis. This study employed periodate (PI)/ferrate (VI) (Fe (VI)) system to disinfect Gram-negative ARB (Escherichia coli DH5α) and Gram-positive bacteria (Bacillus subtilis ATCC6633). The PI/Fe (VI) system could inactivate 1 × 108 CFU/mL of Gram-negative ARB and Gram-positive bacteria by 4.0 and 2.8 log in 30 min. Neutral and acidic pH, increase of PI dosage and Fe (VI) dosage had positive impacts on the inactivation efficiency of ARB, while alkaline solution and the coexistence of 10 mM Cl-, NO3-, SO42- and 20 mg/L humic acid had slightly negative impacts. The reactive species generated by PI/Fe (VI) system could disrupt the integrity of cell membrane and wall, leading to oxidative stress and lipid peroxidation. Intracellular hereditary substance, including DNA and ARGs (tetA), would leak into the external environment through damaged cells and be degraded. The electron spin resonance analysis and quenching experiments indicated that Fe (IV)/Fe (V) played a leading role in disinfection. Meanwhile, PI/Fe (VI) system also had an efficient removal effect on sulfadiazine, which was expected to inhibit the ARGs transmission from the source.


Subject(s)
Bacillus subtilis , Disinfection , Iron , Iron/chemistry , Disinfection/methods , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Drug Resistance, Bacterial/genetics , Disinfectants/pharmacology , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/drug effects
20.
Int J Antimicrob Agents ; 63(5): 107155, 2024 May.
Article in English | MEDLINE | ID: mdl-38527561

ABSTRACT

Due to intramolecular ring structures, the ribosomally produced and post-translationally modified peptide mersacidin shows antimicrobial properties comparable to those of vancomycin without exhibiting cross-resistance. Although the principles of mersacidin biosynthesis are known, there is no information on the molecular control processes for the initial stimulation of mersacidin bioproduction. By using Bacillus subtilis for heterologous biosynthesis, a considerable amount of mersacidin could be produced without the mersacidin-specific immune system and the mersacidin-activating secretory protease. By using the established laboratory strain Bacillus subtilis 168 and strain 3NA, which is used for high cell density fermentation processes, in combination with the construction of reporter strains to determine the promoter strengths within the mersacidin core gene cluster, the molecular regulatory circuit of Spo0A, a master regulator of cell differentiation including sporulation initiation, and the global transcriptional regulator AbrB, which is involved in cell adaptation processes in the transient growth phase, was identified to control the initial stimulation of the mersacidin core gene cluster. In a second downstream regulatory step, the activator MrsR1, encoded in the core gene cluster, acts as a stimulatory element for mersacidin biosynthesis. These findings are important to understand the mechanisms linking environmental conditions and microbial responses with respect to the bioproduction of bioactive metabolites including antimicrobials such as mersacidin. This information will also support the construction of production strains for bioactive metabolites with antimicrobial properties.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacteriocins , Gene Expression Regulation, Bacterial , Multigene Family , Transcription Factors , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Peptides/metabolism , Peptides/genetics , Promoter Regions, Genetic , Peptide Fragments/genetics , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...