Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.383
Filter
1.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856816

ABSTRACT

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Subject(s)
Bacillus subtilis , Biodegradation, Environmental , Petroleum , Wastewater , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Wastewater/microbiology , Wastewater/chemistry , Petroleum/metabolism , Petroleum/toxicity , Phenanthrenes/metabolism , Phenanthrenes/analysis , Phenanthrenes/toxicity , Naphthalenes/metabolism , Naphthalenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Sewage/microbiology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Metals, Heavy/analysis
2.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831110

ABSTRACT

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Subject(s)
Bacillus subtilis , Endophytes , Plant Roots , Rosmarinus , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/genetics , Endophytes/classification , Rosmarinus/chemistry , Rosmarinus/microbiology , Plant Roots/microbiology , Plant Roots/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Fusarium/growth & development , Fusarium/genetics , Fusarium/metabolism , Soil Microbiology , Plant Development , Germination , Indoleacetic Acids/metabolism , Rhizoctonia/growth & development , Rhizoctonia/drug effects , Nitrogen Fixation , Phosphates/metabolism
3.
Sci Rep ; 14(1): 11389, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762518

ABSTRACT

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Subject(s)
Bacillus megaterium , Fertilizers , Phosphates , Phosphorus , Soil Microbiology , Soil , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Phosphorus/metabolism , Soil/chemistry , Bacillus megaterium/metabolism , Bacillus megaterium/genetics , Bacillus megaterium/growth & development , Phosphates/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/genetics
4.
Nat Commun ; 15(1): 4486, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802389

ABSTRACT

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Subject(s)
Adaptation, Physiological , Aspergillus niger , Bacillus subtilis , Lipopeptides , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Aspergillus niger/metabolism , Aspergillus niger/physiology , Aspergillus niger/growth & development , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Hyphae/growth & development , Hyphae/metabolism , Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coculture Techniques , Mutation , Cell Wall/metabolism
5.
Physiol Plant ; 176(3): e14338, 2024.
Article in English | MEDLINE | ID: mdl-38740528

ABSTRACT

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Subject(s)
Bacillus subtilis , Phosphorus , Plant Roots , Soil , Solanum lycopersicum , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Soil/chemistry , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/metabolism , Soil Microbiology , Solubility , Indoleacetic Acids/metabolism , Fertilizers
6.
Biotechnol Lett ; 46(3): 355-371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607603

ABSTRACT

OBJECTIVES: Bacillus subtilis is a plant growth promoting bacterium (PGPB) that acts as a microbial fertilizer and biocontrol agent, providing benefits such as boosting crop productivity and improving nutrient content. It is able to produce secondary metabolites and endospores simultaneously, enhancing its ability to survive in unfavorable conditions and eliminate competing microorganisms. Optimizing cultivation methods to produce B. subtilis MSCL 897 spores on an industrial scale, requires a suitable medium, typically made from food industry by-products, and optimal temperature and pH levels to achieve high vegetative cell and spore densities with maximum productivity. RESULTS: This research demonstrates successful pilot-scale (100 L bioreactor) production of a biocontrol agent B. subtilis with good spore yields (1.5 × 109 spores mL-1) and a high degree of sporulation (>80%) using a low-cost cultivation medium. Culture samples showed excellent antifungal activity (1.6-2.3 cm) against several phytopathogenic fungi. An improved methodology for inoculum preparation was investigated to ensure an optimal seed culture state prior to inoculation, promoting process batch-to-batch repeatability. Increasing the molasses concentration in the medium and operating the process in fed-batch mode with additional molasses feed, did not improve the overall spore yield, hence, process operation in batch mode with 10 g molasses L-1 is preferred. Results also showed that the product quality was not significantly impacted for up to 12 months of storage at room temperature. CONCLUSION: An economically-feasible process for B. subtilis-based biocontrol agent production was successfully developed at the pilot scale.


Subject(s)
Bacillus subtilis , Biomass , Bioreactors , Culture Media , Spores, Bacterial , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Culture Media/chemistry , Bioreactors/microbiology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Pilot Projects
7.
Environ Res ; 252(Pt 2): 118958, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38640987

ABSTRACT

In modern agricultural practices, agrochemicals and pesticides play an important role in protecting the crops from pests and elevating agricultural productivity. This strategic utilization is essential to meet global food demand due to the relentless growth of the world's population. However, the indiscriminate application of these substances may result in environmental hazards and directly affect the soil microorganisms and crop production. Considering this, an in vitro study was carried out to evaluate the pesticides' effects i.e. lambda cyhalothrin (insecticide) and fosetyl aluminum (fungicide) at lower, recommended, and higher doses on growth behavior, enzymatic profile, total soluble protein production, and lipid peroxidation of bacterial specimens (Pseudomonas aeruginosa and Bacillus subtilis). The experimental findings demonstrated a concentration-dependent decrease in growth of both tested bacteria, when exposed to fosetyl aluminium concentrations exceeding the recommended dose. This decline was statistically significant (p < 0.000). However, lambda cyhalothrin at three times of recommended dose induces 10% increase in growth of Pseudomonas aeruginosa (P. aeruginosa) and 76.8% decrease in growth of Bacillus subtilis (B. subtilis) respectively as compared to control. These results showed the stimulatory effect of lambda cyhalothrin on P. aeruginosa and inhibitory effect on B. subtilis. Pesticides induced notable alterations in biomarker enzymatic assays and other parameters related to oxidative stress among bacterial strains, resulting in increased oxidative stress and membrane permeability. Generally, the maximum toxicity of both (P. aeruginosa and B. subtilis) was shown by fosetyl aluminium, at three times of recommended dose. Fosetyl aluminium induced morphological changes like cellular cracking, reduced viability, aberrant margins and more damage in both bacterial strains as compared to lambda cyhalothrin when observed under scanning electron microscope (SEM). Conclusively the, present study provide an insights into a mechanistic approach of pyrethroid insecticide and phosphonite fungicide induced cellular toxicity towards bacteria.


Subject(s)
Bacillus subtilis , Nitriles , Pseudomonas aeruginosa , Pyrethrins , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Pyrethrins/toxicity , Pseudomonas aeruginosa/drug effects , Nitriles/toxicity , Insecticides/toxicity , Lipid Peroxidation/drug effects , Fungicides, Industrial/toxicity
8.
mBio ; 15(5): e0056224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564667

ABSTRACT

Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE: Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.


Subject(s)
Alanine , Amino Acids , Bacillus subtilis , Spores, Bacterial , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Spores, Bacterial/metabolism , Spores, Bacterial/growth & development , Spores, Bacterial/genetics , Alanine/metabolism , Amino Acids/metabolism , Valine/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Culture Media/chemistry
9.
Microb Pathog ; 190: 106604, 2024 May.
Article in English | MEDLINE | ID: mdl-38490458

ABSTRACT

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Subject(s)
Alternaria , Bacillus subtilis , Fungicides, Industrial , Lipopeptides , Nitriles , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/drug effects , Alternaria/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Fungicides, Industrial/pharmacology , Nitriles/pharmacology , Lipopeptides/pharmacology , RNA, Ribosomal, 16S/genetics , Hyphae/drug effects , Hyphae/growth & development , Mycelium/drug effects , Mycelium/growth & development , Peptides, Cyclic/pharmacology
10.
Mol Biotechnol ; 66(5): 1031-1050, 2024 May.
Article in English | MEDLINE | ID: mdl-38097901

ABSTRACT

Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 µg/mL) and mercury (up to 100 µg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.


Subject(s)
Bacillus subtilis , Cicer , Solanum lycopersicum , Cicer/growth & development , Cicer/microbiology , Cicer/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Stress, Physiological , Biopolymers/metabolism , Biopolymers/biosynthesis , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Soil Microbiology , Agriculture/methods , Plant Shoots/growth & development , Plant Shoots/metabolism
11.
Nat Commun ; 14(1): 2001, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037805

ABSTRACT

DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.


Subject(s)
Bacillus subtilis , Bacteria , Biosensing Techniques , Cell Engineering , DNA, Bacterial , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Biosensing Techniques/methods , Humans , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Fluorescence , Microbial Viability , Synthetic Biology , Gene Regulatory Networks/genetics , Genes, Reporter/genetics , In Vitro Techniques , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Bacterial Infections/microbiology
12.
J Gen Appl Microbiol ; 69(1): 45-52, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36384691

ABSTRACT

Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.


Subject(s)
Bacillus subtilis , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Fosfomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Gene Knockout Techniques , Transferases (Other Substituted Phosphate Groups)/genetics
13.
Braz. j. biol ; 83: 1-9, 2023. map, ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468908

ABSTRACT

Isla Arena is located in the coordinate 20° 70´ N - 90° 45´ W, from Campeche, Mexico. In these estuaries, the ocean mixes with fresh water, and ecosystems are concentrated where petenes and pink flamingos proliferate. Crustaceans and mollusks abound in the sea. Despite its enormous marine wealth, there are no studies carried out on which halophilic microorganisms are present in these waters. In this work, the diversity and structure of the microbial community was investigated through a metagenomics approach and corroborated for sequencing of 16S rRNA genes. It was found that the phylum Fimicutes predominates with more than 50%, in almost the same proportion of the class Bacilli and with almost 41% of relative abundance of the order Bacillales. The sequencing results showed that one of the samples presented a high percentage of similarity (99.75%) using the Nucleotide BLAST program with a peculiar microorganism: Bacillus subtilis. This microorganism is one of the best characterized bacteria among the gram-positive ones. Our results demonstrate that B. subtilis can be an efficient source of proteases, lipases and cellulases, from halophilic microbial communities located in poorly explored areas.


Isla Arena está localizada na coordenada 20°70’N - 90°45’W, de Campeche, México. Nesses estuários, o oceano se mistura com a água doce e os ecossistemas se concentram onde proliferam petenos e flamingos rosa. Crustáceos e moluscos abundam no mar. Apesar de sua enorme riqueza marinha, não há estudos realizados sobre a presença de microrganismos halofílicos nessas águas. Neste trabalho, a diversidade e estrutura da comunidade microbiana foram investigadas através de uma abordagem metagenômica e corroboradas para o sequenciamento de genes 16S rRNA. Verificou-se que o filo Fimicutes predomina com mais de 50%, quase na mesma proporção da classe Bacilli e com quase 41% de abundância relativa da ordem Bacillales. Os resultados do sequenciamento mostraram que uma das amostras apresentou alto percentual de similaridade (99,75%) pelo programa Nucleotide BLAST com um microrganismo peculiar: Bacillus subtilis. Nossos resultados demonstram que B. subtilis pode ser uma fonte eficiente de proteases, lipases e celulases, provenientes de comunidades microbianas halofílicas localizadas em áreas pouco exploradas.


Subject(s)
Animals , Bacillales/isolation & purification , Bacillus subtilis/growth & development , Ecosystem , Microbiota/genetics , /analysis
14.
Proc Natl Acad Sci U S A ; 119(30): e2122202119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858419

ABSTRACT

Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.


Subject(s)
Bacillus subtilis , Biofilms , Stress, Mechanical , Bacillus subtilis/growth & development , Culture Media , Models, Theoretical , Porosity
15.
J Mol Biol ; 434(13): 167641, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35597553

ABSTRACT

Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis, the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile. To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation.


Subject(s)
Bacterial Proteins , Clostridioides difficile , Transcription Factors/metabolism , Bacillus/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Clostridioides difficile/growth & development , Clostridioides difficile/metabolism , Gene Expression Regulation, Bacterial , Spores, Bacterial/metabolism
16.
PLoS One ; 17(2): e0264276, 2022.
Article in English | MEDLINE | ID: mdl-35226695

ABSTRACT

Bacillus subtilis strain Ydj3 was applied to sweet peppers to understand the influence of this bacterium on the growth, fruit quality, and rhizosphere microbial composition of sweet pepper. The promotion of seed germination was observed for sweet pepper seeds treated with the Ydj3 strain, indicating that Ydj3 promoted seed germination and daily germination speed (131.5 ± 10.8 seeds/day) compared with the control (73.8 ± 2.5 seeds/day). Strain Ydj3 displayed chemotaxis toward root exudates from sweet pepper and could colonize the roots, which enhanced root hair growth. Following the one-per-month application of strain Ydj3 to sweet pepper grown in a commercial greenhouse, the yield, fruit weight, and vitamin C content significantly increased compared with those of the control. Additionally, the composition of the rhizosphere bacterial community of sweet pepper changed considerably, with the Bacillus genus becoming the most dominant bacterial genus in the treated group. These results suggested that B. subtilis Ydj3 promotes seed germination and enhances fruit quality, particularly the vitamin C content, of sweet pepper. These effects may be partly attributed to the B. subtilis Ydj3 colonization of sweet pepper roots due to Ydj3 chemotaxis toward root exudates, resulting in the modulation of the rhizosphere bacterial community.


Subject(s)
Ascorbic Acid/metabolism , Bacillus subtilis/growth & development , Capsicum , Germination , Rhizosphere , Seeds/metabolism , Soil Microbiology , Capsicum/growth & development , Capsicum/microbiology
17.
Dev Cell ; 57(3): 344-360.e6, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35065768

ABSTRACT

Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Cell Membrane/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacillus subtilis/physiology , Bacillus subtilis/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/ultrastructure , Models, Biological , Mutation/genetics , Peptidoglycan/metabolism , Polymerization , Protein Domains , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure
18.
Cell ; 185(1): 145-157.e13, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995513

ABSTRACT

Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , Biofilms/growth & development , Body Patterning/genetics , Bacillus subtilis/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Kinetics , Models, Biological , Nitrogen/metabolism , Signal Transduction/genetics , Somites/growth & development , Spores, Bacterial/growth & development , Stress, Physiological/genetics , Time Factors
19.
Nat Commun ; 13(1): 431, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058430

ABSTRACT

Microbial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of four non-ribosomal peptides/polyketide (NRPs/PKS) antibiotics produced by Bacillus subtilis clade, we revealed that they acted synergistically to effectively eliminate phylogenetically distinct competitors. The production of these antibiotics came with a fitness cost manifested in growth inhibition, rendering their synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, antibiotic production was only induced by the presence of a peptidoglycan cue from a sensitive competitor, a response mediated by the global regulator of cellular competence, ComA. These results experimentally demonstrate a general ecological concept - closely related communities are favoured during competition, due to compatibility in attack and defence mechanisms.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Peptidoglycan/metabolism , Biosynthetic Pathways , Nucleotides/metabolism , Peptides/metabolism , Plankton/growth & development , Polyketides/metabolism , Promoter Regions, Genetic/genetics , Ribosomes/metabolism , Transcription, Genetic
20.
J Bacteriol ; 204(2): e0053321, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34871030

ABSTRACT

The WalR-WalK two component signaling system in Bacillus subtilis functions in the homeostatic control of the peptidoglycan (PG) hydrolases LytE and CwlO that are required for cell growth. When the activities of these enzymes are low, WalR activates transcription of lytE and cwlO and represses transcription of iseA, a secreted inhibitor of LytE. Conversely, when PG hydrolase activity is too high, WalR-dependent expression of lytE and cwlO is reduced and iseA is derepressed. In a screen for additional factors that regulate this signaling pathway, we discovered that overexpression of the membrane-anchored PG deacetylase PdaC increases WalR-dependent gene expression. We show that increased expression of PdaC, but not catalytic mutants, prevents cell wall cleavage by both LytE and CwlO, explaining the WalR activation. Importantly, the pdaC gene, like iseA, is repressed by active WalR. We propose that derepression of pdaC when PG hydrolase activity is too high results in modification of the membrane-proximal layers of the PG, protecting the wall from excessive cleavage by the membrane-tethered CwlO. Thus, the WalR-WalK system homeostatically controls the levels and activities of both elongation-specific cell wall hydrolases. IMPORTANCE Bacterial growth and division requires a delicate balance between the synthesis and remodeling of the cell wall exoskeleton. How bacteria regulate the potentially autolytic enzymes that remodel the cell wall peptidoglycan remains incompletely understood. Here, we provide evidence that the broadly conserved WalR-WalK two-component signaling system homeostatically controls both the levels and activities of two cell wall hydrolases that are critical for cell growth.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism , Signal Transduction/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/enzymology , Cell Wall/metabolism , Gene Expression Regulation, Bacterial , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...