Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.156
Filter
1.
Ann Clin Microbiol Antimicrob ; 23(1): 39, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702796

ABSTRACT

BACKGROUND: Non-surgical chronic wounds, including diabetes-related foot diseases (DRFD), pressure injuries (PIs) and venous leg ulcers (VLU), are common hard-to-heal wounds. Wound evolution partly depends on microbial colonisation or infection, which is often confused by clinicians, thereby hampering proper management. Current routine microbiology investigation of these wounds is based on in vitro culture, focusing only on a limited panel of the most frequently isolated bacteria, leaving a large part of the wound microbiome undocumented. METHODS: A literature search was conducted on original studies published through October 2022 reporting metagenomic next generation sequencing (mNGS) of chronic wound samples. Studies were eligible for inclusion if they applied 16 S rRNA metagenomics or shotgun metagenomics for microbiome analysis or diagnosis. Case reports, prospective, or retrospective studies were included. However, review articles, animal studies, in vitro model optimisation, benchmarking, treatment optimisation studies, and non-clinical studies were excluded. Articles were identified in PubMed, Google Scholar, Web of Science, Microsoft Academic, Crossref and Semantic Scholar databases. RESULTS: Of the 3,202 articles found in the initial search, 2,336 articles were removed after deduplication and 834 articles following title and abstract screening. A further 14 were removed after full text reading, with 18 articles finally included. Data were provided for 3,628 patients, including 1,535 DRFDs, 956 VLUs, and 791 PIs, with 164 microbial genera and 116 species identified using mNGS approaches. A high microbial diversity was observed depending on the geographical location and wound evolution. Clinically infected wounds were the most diverse, possibly due to a widespread colonisation by pathogenic bacteria from body and environmental microbiota. mNGS data identified the presence of virus (EBV) and fungi (Candida and Aspergillus species), as well as Staphylococcus and Pseudomonas bacteriophages. CONCLUSION: This study highlighted the benefit of mNGS for time-effective pathogen genome detection. Despite the majority of the included studies investigating only 16 S rDNA, ignoring a part of viral, fungal and parasite colonisation, mNGS detected a large number of bacteria through the included studies. Such technology could be implemented in routine microbiology for hard-to-heal wound microbiota investigation and post-treatment wound colonisation surveillance.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Wound Healing , Microbiota/genetics , Pressure Ulcer/microbiology , Diabetic Foot/microbiology , Wound Infection/microbiology , Varicose Ulcer/microbiology
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38702839

ABSTRACT

AIMS: Macroalgae harbor a rich epiphytic microbiota that plays a crucial role in algal morphogenesis and defense mechanisms. This study aims to isolate epiphytic cultivable microbiota from Ulva sp. surfaces. Various culture media were employed to evaluate a wide range of cultivable microbiota. Our objective was to assess the antibacterial and biofilm-modulating activities of supernatants from isolated bacteria. METHODS AND RESULTS: Sixty-nine bacterial isolates from Ulva sp. were identified based on 16S rRNA gene sequencing. Their antibacterial activity and biofilm modulation potential were screened against three target marine bacteria: 45%, mostly affiliated with Gammaproteobacteria and mainly grown on diluted R2A medium (R2Ad), showed strong antibacterial activity, while 18% had a significant impact on biofilm modulation. Molecular network analysis was carried out on four bioactive bacterial supernatants, revealing new molecules potentially responsible for their activities. CONCLUSION: R2Ad offered the greatest diversity and proportion of active isolates. The molecular network approach holds promise for both identifying bacterial isolates based on their molecular production and characterizing antibacterial and biofilm-modulating activities.


Subject(s)
Anti-Bacterial Agents , Bacteria , Biofilms , RNA, Ribosomal, 16S , Ulva , Biofilms/drug effects , Biofilms/growth & development , Ulva/microbiology , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Microbiota , Phylogeny , Biodiversity , Seaweed/microbiology
3.
Microb Ecol ; 87(1): 67, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703220

ABSTRACT

Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S , Spiders , Animals , Spiders/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Female , Gastrointestinal Microbiome , Humans , Phylogeny , Biodiversity , Anti-Bacterial Agents/pharmacology , Pesticides
4.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Article in English | MEDLINE | ID: mdl-38707511

ABSTRACT

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Renal Insufficiency, Chronic , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Renal Insufficiency, Chronic/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Phylogeny , Faecalibacterium prausnitzii/genetics , Biodiversity , Dysbiosis/microbiology
5.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722362

ABSTRACT

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , SARS-CoV-2 , Tertiary Care Centers , Humans , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Egypt/epidemiology , Anti-Bacterial Agents/pharmacology , SARS-CoV-2/drug effects , Neoplasms , Microbial Sensitivity Tests , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Cancer Care Facilities , Pandemics
6.
Front Immunol ; 15: 1369116, 2024.
Article in English | MEDLINE | ID: mdl-38711505

ABSTRACT

Objective: Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS. Methods: To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites. Results: A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored. Conclusion: In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.


Subject(s)
Feces , Gastrointestinal Microbiome , Metabolome , Probiotics , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/microbiology , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/immunology , Male , Female , Adult , Feces/microbiology , Metagenomics/methods , Middle Aged , Prospective Studies , Metabolomics , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology
7.
Appl Microbiol Biotechnol ; 108(1): 328, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717672

ABSTRACT

Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.


Subject(s)
Bacteria , Pseudogenes , Pseudogenes/genetics , Bacteria/genetics , Bacteria/classification , Virulence/genetics , Viruses/genetics , Viruses/classification
8.
Sci Rep ; 14(1): 10544, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719860

ABSTRACT

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Subject(s)
Acetolactate Synthase , Acetyl-CoA Carboxylase , Echinochloa , Herbicide Resistance , Herbicides , Soil Microbiology , Italy/epidemiology , Herbicides/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Echinochloa/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Plant Weeds/drug effects , Microbiota/drug effects , Biodiversity , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Soil/chemistry , Fungi/drug effects , Fungi/isolation & purification , Fungi/genetics
9.
Sci Rep ; 14(1): 10584, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719878

ABSTRACT

This study aimed to evaluate the blood bacterial microbiota in healthy and febrile cats. High-quality sequencing reads from the 16S rRNA gene variable region V3-V4 were obtained from genomic blood DNA belonging to 145 healthy cats, and 140 febrile cats. Comparisons between the blood microbiota of healthy and febrile cats revealed dominant presence of Actinobacteria, followed by Firmicutes and Proteobacteria, and a lower relative abundance of Bacteroidetes. Upon lower taxonomic levels, the bacterial composition was significantly different between healthy and febrile cats. The families Faecalibacterium and Kineothrix (Firmicutes), and Phyllobacterium (Proteobacteria) experienced increased abundance in febrile samples. Whereas Thioprofundum (Proteobacteria) demonstrated a significant decrease in abundance in febrile. The bacterial composition and beta diversity within febrile cats was different according to the affected body system (Oral/GI, systemic, skin, and respiratory) at both family and genus levels. Sex and age were not significant factors affecting the blood microbiota of febrile cats nor healthy ones. Age was different between young adult and mature adult healthy cats. Alpha diversity was unaffected by any factors. Overall, the findings suggest that age, health status and nature of disease are significant factors affecting blood microbiota diversity and composition in cats, but sex is not.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Animals , Cats , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Fever/microbiology , Fever/blood , Female , Male , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Cat Diseases/microbiology , Cat Diseases/blood
10.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719945

ABSTRACT

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Subject(s)
Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
11.
Sci Rep ; 14(1): 10525, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720057

ABSTRACT

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Subject(s)
Arachis , Bacteria , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Arachis/microbiology , India , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Farms , Plant Roots/microbiology , Phylogeny , Metagenome , Biodiversity
12.
BMC Ecol Evol ; 24(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720266

ABSTRACT

BACKGROUND: Karst caves serve as natural laboratories, providing organisms with extreme and constant conditions that promote isolation, resulting in a genetic relationship and living environment that is significantly different from those outside the cave. However, research on cave creatures, especially Opiliones, remains scarce, with most studies focused on water, soil, and cave sediments. RESULTS: The structure of symbiotic bacteria in different caves were compared, revealing significant differences. Based on the alpha and beta diversity, symbiotic bacteria abundance and diversity in the cave were similar, but the structure of symbiotic bacteria differed inside and outside the cave. Microorganisms in the cave play an important role in material cycling and energy flow, particularly in the nitrogen cycle. Although microbial diversity varies inside and outside the cave, Opiliones in Beijing caves and Hainan Island exhibited a strong similarity, indicating that the two environments share commonalities. CONCLUSIONS: The karst cave environment possesses high microbial diversity and there are noticeable differences among different caves. Different habitats lead to significant differences in the symbiotic bacteria in Opiliones inside and outside the cave, and cave microorganisms have made efforts to adapt to extreme environments. The similarity in symbiotic bacteria community structure suggests a potential similarity in host environments, providing an explanation for the appearance of Sinonychia martensi in caves in the north.


Subject(s)
Bacteria , Caves , Ecosystem , Symbiosis , Caves/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , China , Microbiota/physiology , Biodiversity
13.
Microbiome ; 12(1): 83, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725008

ABSTRACT

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Subject(s)
Hyphae , Microbiota , Mycorrhizae , Plant Roots , Soil Microbiology , Streptomyces , Mycorrhizae/physiology , Mycorrhizae/classification , Streptomyces/classification , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/physiology , Hyphae/growth & development , Plant Roots/microbiology , Phosphorus/metabolism , Microbial Interactions/physiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism
14.
Microbiome ; 12(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725064

ABSTRACT

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.


Subject(s)
Metagenome , Rumen , Viruses , Rumen/microbiology , Rumen/virology , Animals , Viruses/classification , Viruses/genetics , Gastrointestinal Microbiome , Virome , Ruminants/microbiology , Ruminants/virology , Methane/metabolism , Animal Feed , Bacteria/classification , Bacteria/genetics
15.
Microbiome ; 12(1): 84, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725076

ABSTRACT

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Subject(s)
Bacteria , Neural Networks, Computer , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Genes, Bacterial/genetics , Drug Resistance, Microbial/genetics , Humans , Deep Learning
17.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Article in English | MEDLINE | ID: mdl-38725449

ABSTRACT

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Subject(s)
Febrile Neutropenia , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Male , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Female , Middle Aged , Febrile Neutropenia/microbiology , Febrile Neutropenia/blood , Febrile Neutropenia/diagnosis , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Mycoses/diagnosis , Mycoses/microbiology , Virus Diseases/diagnosis , Virus Diseases/virology
18.
Food Res Int ; 186: 114318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729711

ABSTRACT

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Subject(s)
Food Microbiology , Microbiota , Red Meat , Microbiota/genetics , Red Meat/microbiology , Animals , Cattle , Food Handling/methods , Bacteria/genetics , Bacteria/classification , Metagenomics/methods , Drug Resistance, Bacterial/genetics , Abattoirs , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Drug Resistance, Microbial/genetics , Food Packaging
19.
Food Res Int ; 186: 114328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729714

ABSTRACT

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Subject(s)
Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
20.
Food Res Int ; 186: 114377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729733

ABSTRACT

To clarify the relationship between microorganisms and physicochemical indicators of Xuanwei ham. Six ham samples for the first, second and third year were selected, respectively. The changes of physicochemical properties, the free fatty acids and microbial communities of Xuanwei ham were investigated by GC-MS and high-throughput sequencing technology. Results showed that scores of colour, overall acceptability, texture, taste and aroma were the highest in the third year sample. With increasing ripening time, moisture content, water activity (Aw), lightness (L*), springiness, and resilience decreased continuously, and yellowness (b*) was the highest in the second year sample. 31 free fatty acids were detected, and unsaturated fatty acids such as palmitoleic acid, oleic acid, and linoleic acid were the major fatty acids. The content of palmitoleic acid, oleic acid and eicosenoic acid increased significantly during processing. At the phylum level, the dominant bacteria were Proteobacteria and Firmicutes, and fungi were Ascomycota. At the genus level, the dominant bacteria were Staphylococcus and Psychrobacter, and fungi were Aspergillus. Correlation analysis showed that water content and Aw were closely related to microorganisms, and most unsaturated fatty acids were significantly correlated with microorganisms. These findings showed that microorganisms played an important role in the quality of Xuanwei ham, and provided a scientific basis for the quality control of Xuanwei ham.


Subject(s)
Meat Products , Animals , Meat Products/microbiology , Meat Products/analysis , Food Microbiology , Bacteria/classification , Microbiota , Food Handling/methods , Swine , Taste , Fatty Acids, Unsaturated/analysis , Color , Gas Chromatography-Mass Spectrometry , Pork Meat/microbiology , Pork Meat/analysis , Odorants/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Monounsaturated
SELECTION OF CITATIONS
SEARCH DETAIL
...