Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.979
Filter
1.
Curr Microbiol ; 81(6): 163, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710822

ABSTRACT

By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.


Subject(s)
Integrases , Integrons , Recombination, Genetic , Integrases/genetics , Integrases/metabolism , Integrons/genetics , Mutation , Escherichia coli/genetics , Escherichia coli/enzymology , Bacteria/genetics , Bacteria/enzymology
2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697936

ABSTRACT

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Subject(s)
Bacteria , Carbon , Microbiota , Nitrogen , Nutrients , Soil Microbiology , Soil , Antarctic Regions , Nitrogen/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Nutrients/metabolism , Soil/chemistry , Carbon/metabolism , Biodiversity , RNA, Ribosomal, 16S/genetics
3.
Arch Microbiol ; 206(6): 277, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789671

ABSTRACT

Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 µm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.


Subject(s)
Biomass , Laccase , Lignin , Lignin/metabolism , Laccase/metabolism , Algeria , Cellulase/metabolism , Sugars/metabolism , Cellulose/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/enzymology , Bacteria/genetics , Fermentation , Polysaccharides/metabolism , Bacillus/metabolism , Bacillus/enzymology
5.
Biosens Bioelectron ; 257: 116300, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657378

ABSTRACT

Developing simple, inexpensive, fast, sensitive, and specific probes for antibiotic-resistant bacteria is crucial for the management of urinary tract infections (UTIs). We here propose a paper-based sensor for the rapid detection of ß-lactamase-producing bacteria in the urine samples of UTI patients. By conjugating a strongly electronegative group -N+(CH3)3 with the core structures of cephalosporin and carbapenem antibiotics, two visual probes were achieved to respectively target the extended-spectrum/AmpC ß-lactamases (ESBL/AmpC) and carbapenemase, the two most prevalent factors causing antibiotic resistance. By integrating these probes into a portable paper sensor, we confirmed 10 and 8 cases out of 30 clinical urine samples as ESBL/AmpC- and carbapenemase-positive, respectively, demonstrating 100% clinical sensitivity and specificity. This paper sensor can be easily conducted on-site, without resorting to bacterial culture, providing a solution to the challenge of rapid detection of ß-lactamase-producing bacteria, particularly in resource-limited settings.


Subject(s)
Biosensing Techniques , Paper , Urinary Tract Infections , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/diagnosis , Biosensing Techniques/methods , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Bacteria/isolation & purification , Bacteria/enzymology , Cephalosporins/chemistry , Carbapenems/pharmacology
6.
Chembiochem ; 25(10): e202300821, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38564329

ABSTRACT

Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.


Subject(s)
Amidohydrolases , Bile Acids and Salts , Gastrointestinal Microbiome , Animals , Mice , Humans , Amidohydrolases/metabolism , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Substrate Specificity , Mice, Inbred C57BL , Bacteria/metabolism , Bacteria/enzymology , Circadian Rhythm , Molecular Probes/chemistry , Molecular Probes/metabolism
7.
Microb Biotechnol ; 17(4): e14467, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656876

ABSTRACT

Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.


Subject(s)
Bacteria , Biotechnology , Cold Temperature , Enzymes , Biotechnology/methods , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Enzymes/metabolism , Enzyme Stability
8.
J Agric Food Chem ; 72(18): 10451-10458, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38632679

ABSTRACT

In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.


Subject(s)
Catalytic Domain , Enzyme Stability , Mannans , Mannosidases , Rumen , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Mannosidases/genetics , Mannosidases/metabolism , Mannosidases/chemistry , Mannans/chemistry , Mannans/metabolism , Hydrolysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Substrate Specificity , beta-Mannosidase/genetics , beta-Mannosidase/chemistry , beta-Mannosidase/metabolism , Kinetics
9.
J Hazard Mater ; 471: 134377, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663298

ABSTRACT

The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Rivers , Geologic Sediments/microbiology , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/enzymology , Biodiversity , Xenobiotics/metabolism , Water Pollutants, Chemical/analysis , India , Plastics , Metagenome , Metagenomics , Benzhydryl Compounds
10.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38653191

ABSTRACT

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Subject(s)
Bacteria , Carboxy-Lyases , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carboxy-Lyases/chemistry , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Fungi/genetics , Fungi/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Biocatalysis , Oxalates/metabolism , Oxalates/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Gene Expression Regulation, Enzymologic , Humans , Catalysis , Animals
11.
Chem Rev ; 124(8): 4863-4934, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38606812

ABSTRACT

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.


Subject(s)
Bacteria , Glucans , Glucans/metabolism , Glucans/chemistry , Bacteria/enzymology , Bacteria/metabolism , Evolution, Molecular
12.
J Biotechnol ; 389: 43-60, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38616038

ABSTRACT

Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.


Subject(s)
Flavoring Agents , Metabolic Engineering , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Perfume , Odorants/analysis , Fermentation
13.
Food Chem ; 450: 139345, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640524

ABSTRACT

The protective mode of PostbioYDFF-3 (referred to as postbiotics) on the quality stability of refrigerated fillets was explored from the aspects of endogenous enzyme activity and the abundance of spoilage microorganisms. Compared to the control group, the samples soaked in postbiotics showed significant reductions in TVC, TVB-N and TBARS values by 39.6%, 58.6% and 25.5% on day 5, respectively. In addition, the color changes, biogenic amine accumulation and texture softening of the fish fillets soaked in postbiotics were effectively suppressed. Furthermore, the activity of endogenous enzyme activities was detected. The calpain activities were significantly inhibited (p < 0.05) after soaking in postbiotics, which declined by 23%. Meanwhile, high throughput sequencing analysis further indicated that the growth of spoilage microorganism such as Acinetobacter and Pseudomonas were suppressed. Overall, the PostbioYDFF-3 was suitable for preserving fish meat.


Subject(s)
Bacteria , Carps , Food Preservation , Seafood , Animals , Seafood/analysis , Seafood/microbiology , Food Preservation/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/enzymology , Refrigeration , Food Preservatives/pharmacology , Meat/analysis , Meat/microbiology , Pseudomonas/enzymology , Pseudomonas/growth & development
14.
Chembiochem ; 25(9): e202300874, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38458972

ABSTRACT

Nitrogen-Nitrogen (N-N) bond-containing functional groups in natural products and synthetic drugs play significant roles in exerting biological activities. The mechanisms of N-N bond formation in natural organic molecules have garnered increasing attention over the decades. Recent advances have illuminated various enzymatic and nonenzymatic strategies, and our understanding of natural N-N bond construction is rapidly expanding. A group of didomain proteins with zinc-binding cupin/methionyl-tRNA synthetase (MetRS)-like domains, also known as hydrazine synthetases, generates amino acid-based hydrazines, which serve as key biosynthetic precursors of diverse N-N bond-containing functionalities such as hydrazone, diazo, triazene, pyrazole, and pyridazinone groups. In this review, we summarize the current knowledge on hydrazine synthetase mechanisms and the various pathways employing this unique bond-forming machinery.


Subject(s)
Hydrazines , Hydrazines/chemistry , Hydrazines/metabolism , Methionine-tRNA Ligase/metabolism , Bacteria/enzymology , Bacteria/metabolism , Biosynthetic Pathways
15.
Microbiol Spectr ; 12(5): e0303623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511953

ABSTRACT

Metagenomics, metatranscriptomics, and metaproteomics are used to explore the microbial capability of enzyme secretion, but the links between protein-encoding genes and corresponding transcripts/proteins across ecosystems are underexplored. By conducting a multi-omics comparison focusing on key enzymes (carbohydrate-active enzymes [CAZymes] and peptidases) cleaving the main biomolecules across distinct microbiomes living in the ocean, soil, and human gut, we show that the community structure, functional diversity, and secretion mechanisms of microbial secretory CAZymes and peptidases vary drastically between microbiomes at metagenomic, metatranscriptomic, and metaproteomic levels. Such variations lead to decoupled relationships between CAZymes and peptidases from genetic potentials to protein expressions due to the different responses of key players toward organic matter sources and concentrations. Our results highlight the need for systematic analysis of the factors shaping patterns of microbial cleavage on organic matter to better link omics data to ecosystem processes. IMPORTANCE: Omics tools are used to explore adaptive mechanism of microbes in diverse systems, but the advantages and limitations of different omics tools remain skeptical. Here, we reported distinct profiles in microbial secretory enzyme composition revealed by different omics methods. In general, the predicted function from metagenomic analysis decoupled from the expression of corresponding transcripts/proteins. Linking omics results to taxonomic origin, functional capability, substrate specificity, secretion preference, and enzymatic activity measurement suggested the substrate's source, concentration and stoichiometry impose strong filtering on the expression of extracellular enzymes, which may overwrite the genetic potentials. Our results present an integrated perspective on the need for multi-dimensional characterization of microbial adaptation in a changing environment.


Subject(s)
Bacteria , Metagenomics , Microbiota , Microbiota/genetics , Microbiota/physiology , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/enzymology , Humans , Proteomics , Soil Microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Ecosystem , Gastrointestinal Microbiome/genetics , Seawater/microbiology
16.
Protein J ; 43(2): 187-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491249

ABSTRACT

The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.


Subject(s)
Bacteria , Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/chemistry , Bacteria/enzymology , Bacteria/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
17.
Angew Chem Int Ed Engl ; 63(21): e202400743, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38556463

ABSTRACT

Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.


Subject(s)
Alkyl and Aryl Transferases , Computational Biology , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Plants/metabolism , Plants/enzymology , Substrate Specificity , Terpenes/metabolism , Terpenes/chemistry , Catalytic Domain , Bacteria/enzymology
18.
Int J Biol Macromol ; 266(Pt 2): 131109, 2024 May.
Article in English | MEDLINE | ID: mdl-38531520

ABSTRACT

Water buffalo is the only mammal found to degrade lignin so far, and laccase plays an indispensable role in the degradation of lignin. In this study, multiple laccase genes were amplified based on the water buffalo rumen derived lignin-degrading bacteria Bacillus cereus and Ochrobactrum pseudintermedium. Subsequently, the corresponding recombinant plasmids were transformed into E. coli expression system BL21 (DE3) for induced expression by Isopropyl-ß-D-thiogalactopyranoside (IPTG). After preliminary screening, protein purification and enzyme activity assays, Lac3833 with soluble expression and high enzyme activity was selected to test its characteristics, especially the ability of lignin degradation. The results showed that the optimum reaction temperature of Lac3833 was 40 °C for different substrates. The relative activity of Lac3833 reached the highest at pH 4.5 and pH 5.5 when the substrates were ABTS or 2,6-DMP and guaiacol, respectively. Additionally, Lac3833 could maintain high enzyme activity in different temperatures, pH and solutions containing Na+, K+, Mg2+, Ca2+ and Mn2+. Importantly, compared to negative treatment, recombinant laccase Lac3833 treatment showed that it had a significant function in degrading lignin. In conclusion, this is a pioneering study to produce recombinant laccase with lignin-degrading ability by bacteria from water buffalo rumen, which will provide new insights for the exploitation of more lignin-degrading enzymes.


Subject(s)
Buffaloes , Cloning, Molecular , Laccase , Lignin , Recombinant Proteins , Rumen , Temperature , Animals , Laccase/genetics , Laccase/metabolism , Lignin/metabolism , Rumen/microbiology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Hydrogen-Ion Concentration , Gene Expression , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteria/enzymology , Bacteria/genetics , Substrate Specificity
19.
J Biol Chem ; 300(3): 105731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336295

ABSTRACT

The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.


Subject(s)
Evolution, Molecular , Ribonuclease P , Animals , Humans , Archaea/enzymology , Archaea/genetics , Bacteria/enzymology , Bacteria/genetics , Phylogeny , Ribonuclease P/chemistry , Ribonuclease P/classification , Ribonuclease P/genetics , Ribonuclease P/metabolism , RNA, Catalytic
20.
Chemistry ; 30(23): e202304163, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38258332

ABSTRACT

Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.


Subject(s)
Amino Acids, Diamino , Hydro-Lyases , Iron , Molecular Dynamics Simulation , Amino Acids, Diamino/chemistry , Amino Acids, Diamino/metabolism , Iron/chemistry , Iron/metabolism , Intramolecular Transferases/metabolism , Intramolecular Transferases/chemistry , Biocatalysis , Bacteria/enzymology , Catalysis , Cyclization , Ligands , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...