Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.079
Filter
2.
Microb Ecol ; 87(1): 74, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771320

ABSTRACT

Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.


Subject(s)
Adaptation, Physiological , Bacteria , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Fungi/genetics , Fungi/classification , Fungi/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Ecosystem , Bacterial Physiological Phenomena
3.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791481

ABSTRACT

A bacterium's ability to colonize and adapt to an ecological niche is highly dependent on its capacity to perceive and analyze its environment and its ability to interact with its hosts and congeners [...].


Subject(s)
Bacteria , Bacteria/metabolism , Bacterial Physiological Phenomena , Quorum Sensing
4.
Environ Microbiol ; 26(5): e16623, 2024 May.
Article in English | MEDLINE | ID: mdl-38715450

ABSTRACT

Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.


Subject(s)
Amoeba , Bacteria , Symbiosis , Amoeba/microbiology , Models, Biological , Bacterial Physiological Phenomena , Models, Theoretical , Animals
5.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38744663

ABSTRACT

Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.


Subject(s)
Bacteria , Plants , Quorum Sensing , Humans , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Plants/microbiology , Acyl-Butyrolactones/metabolism , Bacterial Physiological Phenomena , Soil Microbiology , Microbiota , Symbiosis , Rhizosphere
6.
Nat Commun ; 15(1): 4238, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762599

ABSTRACT

Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.


Subject(s)
Bacteria , Phenotype , Bacteria/metabolism , Bacteria/genetics , Bacteria/growth & development , Ecosystem , Bacterial Physiological Phenomena , Adaptation, Physiological
7.
Sci Total Environ ; 931: 172967, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705297

ABSTRACT

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.


Subject(s)
Bacteria , Bacterial Physiological Phenomena , Chemotaxis , Biodegradation, Environmental
8.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626194

ABSTRACT

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Subject(s)
Bacteria , Eukaryota , Animals , Bacteria/genetics , Eukaryota/genetics , Genome, Bacterial/genetics , Symbiosis/genetics , Bacterial Physiological Phenomena , Phylogeny
9.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565348

ABSTRACT

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Subject(s)
Bioreactors , Nitrification , Bioreactors/microbiology , Bacteria/metabolism , Adaptation, Physiological , Ammonia/metabolism , Bacterial Physiological Phenomena
10.
Sci Total Environ ; 928: 172397, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38608889

ABSTRACT

Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.


Subject(s)
Biofilms , Microplastics , Seawater , Water Pollutants, Chemical , Zinc , Biofilms/drug effects , Seawater/chemistry , Seawater/microbiology , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Petroleum , Bacteria/drug effects , Polyesters , Bacterial Physiological Phenomena/drug effects
12.
Curr Biol ; 34(8): R323-R325, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38653201

ABSTRACT

The massive species richness of certain taxonomic groups has long enchanted evolutionary biologists, but even within such groups there are biases in cladogenesis. A study of Metazoa's greatest radiation - the beetles - points to metabolic symbioses with bacteria as a possible driver of enhanced diversification in herbivorous clades.


Subject(s)
Biological Evolution , Coleoptera , Symbiosis , Coleoptera/microbiology , Coleoptera/physiology , Animals , Bacteria/classification , Bacteria/genetics , Herbivory/physiology , Bacterial Physiological Phenomena , Phylogeny
13.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604376

ABSTRACT

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Subject(s)
Bacteria , Biofilms , Cyclic GMP , Bacterial Physiological Phenomena , Cold Temperature , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Extracellular Polymeric Substance Matrix , Wastewater/microbiology
14.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38648266

ABSTRACT

Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes). The capacity for flagellar motility was associated with a higher prevalence of genes for carbohydrate metabolism and higher maximum potential growth rates, suggesting that flagellar motility is more prevalent in environments with higher carbon availability. To test this hypothesis, we applied a method to infer the prevalence of flagellar motility in whole bacterial communities from metagenomic data and quantified the prevalence of flagellar motility across four independent field studies that each captured putative gradients in soil carbon availability (148 metagenomes). We observed a positive relationship between the prevalence of bacterial flagellar motility and soil carbon availability in all datasets. Since soil carbon availability is often correlated with other factors that could influence the prevalence of flagellar motility, we validated these observations using metagenomic data from a soil incubation experiment where carbon availability was directly manipulated with glucose amendments. This confirmed that the prevalence of bacterial flagellar motility is consistently associated with soil carbon availability over other potential confounding factors. This work highlights the value of combining predictive genomic and metagenomic approaches to expand our understanding of microbial phenotypic traits and reveal their general environmental associations.


Subject(s)
Bacteria , Flagella , Soil Microbiology , Flagella/genetics , Flagella/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Bacterial Physiological Phenomena , Carbon/metabolism , Soil/chemistry , Metagenome , Genome, Bacterial
15.
Microbiol Res ; 284: 127733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678680

ABSTRACT

Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.


Subject(s)
Bacteria , Bacterial Physiological Phenomena , Extracellular Vesicles , Extracellular Vesicles/metabolism , Bacteria/metabolism , Bacteria/genetics , Humans , Host-Pathogen Interactions , Animals , Host Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
16.
Microbiol Spectr ; 12(5): e0228723, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38506512

ABSTRACT

Understanding the interactions between microorganisms and their impact on bacterial behavior at the community level is a key research topic in microbiology. Different methods, relying on experimental or mathematical approaches based on the diverse properties of bacteria, are currently employed to study these interactions. Recently, the use of metabolic networks to understand the interactions between bacterial pairs has increased, highlighting the relevance of this approach in characterizing bacteria. In this study, we leverage the representation of bacteria through their metabolic networks to build a predictive model aimed at reducing the number of experimental assays required for designing bacterial consortia with specific behaviors. Our novel method for predicting cross-feeding or competition interactions between pairs of microorganisms utilizes metabolic network features. Machine learning classifiers are employed to determine the type of interaction from automatically reconstructed metabolic networks. Several algorithms were assessed and selected based on comprehensive testing and careful separation of manually compiled data sets obtained from literature sources. We used different classification algorithms, including K Nearest Neighbors, XGBoost, Support Vector Machine, and Random Forest, tested different parameter values, and implemented several data curation approaches to reduce the biological bias associated with our data set, ultimately achieving an accuracy of over 0.9. Our method holds substantial potential to advance the understanding of community behavior and contribute to the development of more effective approaches for consortia design.IMPORTANCEUnderstanding bacterial interactions at the community level is critical for microbiology, and leveraging metabolic networks presents an efficient and effective approach. The introduction of this novel method for predicting interactions through machine learning classifiers has the potential to advance the field by reducing the number of experimental assays required and contributing to the development of more effective bacterial consortia.


Subject(s)
Algorithms , Bacteria , Machine Learning , Metabolic Networks and Pathways , Microbial Interactions , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Microbial Interactions/physiology , Microbial Consortia/physiology , Bacterial Physiological Phenomena , Support Vector Machine , Computational Biology/methods
17.
mSystems ; 9(3): e0117723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376179

ABSTRACT

Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.


Subject(s)
Bacteriophages , Bacteriophages/physiology , Bacteria , Escherichia coli/physiology , Bacterial Physiological Phenomena , Symbiosis
19.
mBio ; 15(2): e0268023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38126752

ABSTRACT

This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Bacterial Physiological Phenomena
20.
Proc Natl Acad Sci U S A ; 120(51): e2312651120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38096408

ABSTRACT

Antibiotic effectiveness depends on a variety of factors. While many mechanistic details of antibiotic action are known, the connection between death rate and bacterial physiology is poorly understood. A common observation is that death rate in antibiotics rises linearly with growth rate; however, it remains unclear how other factors, such as environmental conditions and whole-cell physiological properties, affect bactericidal activity. To address this, we developed a high-throughput assay to precisely measure antibiotic-mediated death. We found that death rate is linear in growth rate, but the slope depends on environmental conditions. Growth under stress lowers death rate compared to nonstressed environments with similar growth rate. To understand stress's role, we developed a mathematical model of bacterial death based on resource allocation that includes a stress-response sector; we identify this sector using RNA-seq. Our model accurately predicts the minimal inhibitory concentration (MIC) with zero free parameters across a wide range of growth conditions. The model also quantitatively predicts death and MIC when sectors are experimentally modulated using cyclic adenosine monophosphate (cAMP), including protection from death at very low cAMP levels. The present study shows that different conditions with equal growth rate can have different death rates and establishes a quantitative relation between growth, death, and MIC that suggests approaches to improve antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Bacterial Physiological Phenomena , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Microbial Sensitivity Tests , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...