Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.280
Filter
1.
Protein Expr Purif ; 220: 106490, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697589

ABSTRACT

The production of fermentable sugars from lignocellulosic biomass is achieved by the synergistic action of a group of enzymes called cellulases. Cellulose is a long chain of chemically linked glucoses by ß-1,4 bonds. The enzyme ß-1,4-endoglucanase is the first cellulase involved in the degradation, breaking the bond of the amorphous regions. A ß-1,4-endoglucanase enzyme with high activity was obtained from a Bacillus subtilis strain isolated from wastewater of a pulp and paper mill. Sequencing and bioinformatic analysis showed that the gene amplified by PCR consisting of 1407 nucleotides and coding for a ß-1,4-endoglucanase enzyme of approximately 55 kDa. The open reading frame (ORF) encoding the mature endoglucanase (eglS) was successfully inserted in a modified cloning plasmid (pITD03) and into the pYD1 plasmid used for its expression in yeast. Carboxymethylcellulose (CMC) plate assay, SDS-PAGE, and zymogram confirmed the production and secretion by the transformed E. coli BL21-SI strain of a 39 kDa ß-1,4-endoglucanase consistent with the catalytic domain without the cellulose-binding module (CBM). The results showed that the truncated ß-1,4-endoglucanase had higher activity and stability.


Subject(s)
Bacillus subtilis , Cellulase , Paper , Recombinant Proteins , Wastewater , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/isolation & purification , Wastewater/microbiology , Wastewater/chemistry , Cellulase/genetics , Cellulase/chemistry , Cellulase/biosynthesis , Cellulase/isolation & purification , Cellulase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cloning, Molecular , Gene Expression
2.
J Am Soc Mass Spectrom ; 35(6): 1138-1155, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38740383

ABSTRACT

Having fast, accurate, and broad spectrum methods for the identification of microorganisms is of paramount importance to public health, research, and safety. Bottom-up mass spectrometer-based proteomics has emerged as an effective tool for the accurate identification of microorganisms from microbial isolates. However, one major hurdle that limits the deployment of this tool for routine clinical diagnosis, and other areas of research such as culturomics, is the instrument time required for the mass spectrometer to analyze a single sample, which can take ∼1 h per sample, when using mass spectrometers that are presently used in most institutes. To address this issue, in this study, we employed, for the first time, tandem mass tags (TMTs) in multiplex identifications of microorganisms from multiple TMT-labeled samples in one MS/MS experiment. A difficulty encountered when using TMT labeling is the presence of interference in the measured intensities of TMT reporter ions. To correct for interference, we employed in the proposed method a modified version of the expectation maximization (EM) algorithm that redistributes the signal from ion interference back to the correct TMT-labeled samples. We have evaluated the sensitivity and specificity of the proposed method using 94 MS/MS experiments (covering a broad range of protein concentration ratios across TMT-labeled channels and experimental parameters), containing a total of 1931 true positive TMT-labeled channels and 317 true negative TMT-labeled channels. The results of the evaluation show that the proposed method has an identification sensitivity of 93-97% and a specificity of 100% at the species level. Furthermore, as a proof of concept, using an in-house-generated data set composed of some of the most common urinary tract pathogens, we demonstrated that by using the proposed method the mass spectrometer time required per sample, using a 1 h LC-MS/MS run, can be reduced to 10 and 6 min when samples are labeled with TMT-6 and TMT-10, respectively. The proposed method can also be used along with Orbitrap mass spectrometers that have faster MS/MS acquisition rates, like the recently released Orbitrap Astral mass spectrometer, to further reduce the mass spectrometer time required per sample.


Subject(s)
Algorithms , Proteomics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Proteomics/methods , Humans , Bacteria/isolation & purification , Bacteria/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification
3.
Int J Biol Macromol ; 270(Pt 1): 132286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735612

ABSTRACT

Microbial proteases have proven their efficiency in various industrial applications; however, their application in accelerating the wound healing process has been inconsistent in previous studies. In this study, heterologous expression was used to obtain an over-yielding of the serine alkaline protease. The serine protease-encoding gene aprE was isolated from Bacillus safensis lab 418 and expressed in E. coli BL21 (DE3) using the pET28a (+) expression vector. The gene sequence was assigned the accession number OP610065 in the NCBI GenBank. The open reading frame of the recombinant protease (aprEsaf) was 383 amino acids, with a molecular weight of 35 kDa. The yield of aprEsaf increased to 300 U/mL compared with the native serine protease (SAFWD), with a maximum yield of 77.43 U/mL after optimization conditions. aprEsaf was immobilized on modified amine-functionalized films (MAFs). By comparing the biochemical characteristics of immobilized and free recombinant enzymes, the former exhibited distinctive biochemical characteristics: improved thermostability, alkaline stability over a wider pH range, and efficient reusability. The immobilized serine protease was effectively utilized to expedite wound healing. In conclusion, our study demonstrates the suitability of the immobilized recombinant serine protease for wound healing, suggesting that it is a viable alternative therapeutic agent for wound management.


Subject(s)
Bacillus , Bacterial Proteins , Cloning, Molecular , Endopeptidases , Enzyme Stability , Enzymes, Immobilized , Recombinant Proteins , Wound Healing , Cloning, Molecular/methods , Wound Healing/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Bacillus/enzymology , Bacillus/genetics , Endopeptidases/genetics , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Serine Proteases/genetics , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/metabolism , Hydrogen-Ion Concentration , Gene Expression , Escherichia coli/genetics , Temperature , Amino Acid Sequence
4.
J Biotechnol ; 387: 58-68, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38582407

ABSTRACT

Serratiopeptidase, a proteolytic enzyme serves as an important anti-inflammatory and analgesic medication. Present study reports the production and purification of extracellular serratiopeptidase from an endophyte, Serratia marcescens MES-4, isolated from Morus rubra. Purification of the enzyme by Ion exchange chromatography led to the specific activity of 13,030 U/mg protein of serratiopeptidase, showcasing about 3.1 fold enhanced activity. The catalytic domain of the purified serratiopeptidase, composed of Zn coordinated with three histidine residues (His 209, His 213, and His 219), along with glutamate (Glu 210) and tyrosine (Tyr 249). The molecular mass, as determined by SDS-PAGE was ∼51 kDa. The purified serratiopeptidase displayed optimal activity at pH 9.0, temperature 50°C. Kinetic studies revealed Vmax and Km values of 33,333 U/mL and 1.66 mg/mL, respectively. Further, optimized conditions for the production of serratiopeptidase by Taguchi design led to the productivity of 87 U/mL/h with 87.9 fold enhanced production as compared to the previous conditions.


Subject(s)
Endophytes , Peptide Hydrolases , Serratia marcescens , Serratia marcescens/enzymology , Serratia marcescens/genetics , Peptide Hydrolases/metabolism , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Endophytes/enzymology , Hydrogen-Ion Concentration , Kinetics , Temperature , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification
5.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574878

ABSTRACT

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Subject(s)
Bacillus , Detergents , Serine Proteases , Detergents/chemistry , Detergents/pharmacology , Serine Proteases/isolation & purification , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration
6.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642864

ABSTRACT

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Subject(s)
Bacillus , Bacterial Proteins , Enzyme Stability , Escherichia coli , Recombinant Proteins , Bacillus/enzymology , Bacillus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/biosynthesis , Gene Expression , Temperature , Substrate Specificity
7.
J Immunol Methods ; 529: 113669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582259

ABSTRACT

Because of their superior properties for certain biological applications small antibody derivatives like fragment of antigen binding (Fab) have found widespread use in basic research and as therapeutics. However, generation of Fab-fragments is still a rather complex matter, reflected by the fact that a variety of methods and purification techniques are necessary for the production of all the different classes of Fab-fragments (kappa/lambda light chains, type of species). Here we demonstrate that Fab-fragments derived from six different antibodies of human or murine origin produced by transient expression in HEK cells can be purified in a single step to a high degree of purity by standard protein G affinity chromatography. This is most likely due to alternative contact sites for protein G located in the CH1 domain of the Fab heavy chain. Our data demonstrate that protein G affinity chromatography as for whole antibodies is a robust method for the purification of tag-less Fab-fragments independent of species, significantly simplifying the process of Fab-fragment purification.


Subject(s)
Chromatography, Affinity , Immunoglobulin Fab Fragments , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/chemistry , Chromatography, Affinity/methods , Humans , Animals , Mice , HEK293 Cells , Bacterial Proteins/isolation & purification , Bacterial Proteins/immunology , Bacterial Proteins/chemistry
8.
Enzyme Microb Technol ; 178: 110445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581868

ABSTRACT

The elucidation of the physicochemical properties of glycosidases is essential for their subsequent technological application, which may include saccharide hydrolysis processes and oligosaccharide synthesis. As the application of cloning, purification and enzymatic immobilization methods can be time consuming and require a heavy financial investment, this study has validated the recombinant production of the set of Lacticaseibacillus rhamnosus fucosidases fused with Usp45 and SpaX anchored to the cell wall of Lacticaseibacillus cremoris subsp cremoris MG1363, with the aim of avoiding the purification and stabilization steps. The cell debris harboring the anchored AlfA, AlfB and AlfC fucosidases showed activity against p-nitrophenyl α-L-fucopyranoside of 6.11 ±â€¯0.36, 5.81 ±â€¯0.29 and 9.90 ±â€¯0.58 U/mL, respectively, and exhibited better thermal stability at 50 °C than the same enzymes in their soluble state. Furthermore, the anchored AlfC fucosidase transfucosylated different acceptor sugars, achieving fucose equivalent concentrations of 0.94 ±â€¯0.09 mg/mL, 4.11 ±â€¯0.21 mg/mL, and 4.08 ±â€¯0.15 mg/mL of fucosylgalatose, fucosylglucose and fucosylsucrose, respectively.


Subject(s)
Bacterial Proteins , Enzyme Stability , Enzymes, Immobilized , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/chemistry , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/isolation & purification , alpha-L-Fucosidase/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/isolation & purification
9.
Protein Expr Purif ; 219: 106476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521114

ABSTRACT

Base excision is a crucial DNA repair process mediated by endonuclease IV in nucleotide excision. In Chlamydia pneumoniae, CpendoIV is the exclusive AP endonuclease IV, exhibiting DNA replication error-proofreading capabilities, making it a promising target for anti-chlamydial drug development. Predicting the structure of CpendoIV, molecular docking with DNA was performed, analyzing complex binding sites and protein surface electrostatic potential. Comparative structural studies were conducted with E. coli EndoIV and DNA complex containing AP sites.CpendoIV was cloned, expressed in E. coli, and purified via Ni-NTA chelation and size-exclusion chromatography. Low NaCl concentrations induced aggregation during purification, while high concentrations enhanced purity.CpendoIV recognizes and cleaving AP sites on dsDNA, and Zn2+ influences the activity. Crystallization was achieved under 8% (v/v) Tacsimate pH 5.2, 25% (w/v) polyethylene glycol 3350, and 1.91 Å resolution X-ray diffraction data was obtained at 100 K. This research is significant for provides a deeper understanding of CpendoIV involvement in the base excision repair process, offering insights into Chlamydia pneumoniae.


Subject(s)
Bacterial Proteins , Chlamydophila pneumoniae , Crystallization , Chlamydophila pneumoniae/enzymology , Chlamydophila pneumoniae/genetics , Chlamydophila pneumoniae/chemistry , Crystallography, X-Ray , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Molecular Docking Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Deoxyribonuclease IV (Phage T4-Induced)/genetics , Deoxyribonuclease IV (Phage T4-Induced)/metabolism , Deoxyribonuclease IV (Phage T4-Induced)/isolation & purification , Cloning, Molecular
10.
Fish Shellfish Immunol ; 138: 108810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169109

ABSTRACT

N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.


Subject(s)
Lectins , Palaemonidae , Spiroplasma , Palaemonidae/immunology , Palaemonidae/microbiology , Glycosylation , Lectins/chemistry , Lectins/metabolism , Spiroplasma/metabolism , Immunity, Innate , Gene Expression , Transcription, Genetic , Blotting, Far-Western , Protein Processing, Post-Translational , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Host-Pathogen Interactions
11.
Mar Drugs ; 20(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36547893

ABSTRACT

Alginate is abundant in the cell walls of brown algae. Alginate lyases can degrade alginate, and thus play an important role in the marine carbon cycle and industrial production. Currently, most reported alginate lyases contain only one functional alginate lyase domain. AlyC8 is a putative alginate lyase with two alginate lyase domains (CD1 and CD2) from the marine alginate-degrading strain Vibrio sp. C42. To characterize AlyC8 and its two catalytic domains, AlyC8 and its two catalytic domain-deleted mutants, AlyC8-CD1 and AlyC8-CD2, were expressed in Escherichia coli. All three proteins have noticeable activity toward sodium alginate and exhibit optimal activities at pH 8.0-9.0 and at 30-40 °C, demonstrating that both CD1 and CD2 are functional. However, CD1 and CD2 showed opposite substrate specificity. The differences in substrate specificity and degradation products of alginate between the mutants and AlyC8 demonstrate that CD1 and CD2 can act synergistically to enable AlyC8 to degrade various alginate substrates into smaller oligomeric products. Moreover, kinetic analysis indicated that AlyC8-CD1 plays a major role in the degradation of alginate by AlyC8. These results demonstrate that AlyC8 is a novel alginate lyase with two functional catalytic domains that are synergistic in alginate degradation, which is helpful for a better understanding of alginate lyases and alginate degradation.


Subject(s)
Bacterial Proteins , Polysaccharide-Lyases , Vibrio , Alginates/chemistry , Hydrogen-Ion Concentration , Kinetics , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/isolation & purification , Substrate Specificity , Vibrio/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Mutation , Catalytic Domain
12.
ACS Infect Dis ; 8(12): 2430-2440, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36417754

ABSTRACT

Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 µM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 µM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 µM.


Subject(s)
Bacterial Proteins , Methyltransferases , Mycobacterium tuberculosis , Vitamin K 2 , Humans , Escherichia coli/genetics , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Vitamin K 2/metabolism
13.
Mar Drugs ; 20(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35323464

ABSTRACT

Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N'-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45-50 °C and pH optima of 7.0-7.5. They are all stable at 40 °C and in the pH range of 5.0-11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.


Subject(s)
Bacterial Proteins/chemistry , Chitin/chemistry , Chitinases/chemistry , Disaccharides/chemistry , Pseudoalteromonas/enzymology , Bacterial Proteins/isolation & purification , Chitinases/isolation & purification , Genome, Bacterial , Pseudoalteromonas/genetics , Sodium Chloride/chemistry
14.
Mar Drugs ; 20(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323467

ABSTRACT

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Subject(s)
Bacterial Proteins , Gammaproteobacteria/enzymology , Polysaccharide-Lyases , Polysaccharides/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Gammaproteobacteria/genetics , Molecular Conformation , Phylogeny , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/isolation & purification , Recombinant Proteins/chemistry , Sodium Chloride/chemistry
15.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164122

ABSTRACT

The urease enzyme has been an important target for the discovery of effective pharmacological and agricultural products. Thirteen regio-selectively alkylated benzimidazole-2-thione derivatives have been designed to carry the essential features of urease inhibitors. The urease enzyme was isolated from Helicobacter pylori as a recombinant urease utilizing the His-tag method. The isolated enzyme was purified and characterized using chromatographic and FPLC techniques showing a maximal activity of 200 mg/mL. Additionally, the commercial Jack bean urease was purchased and included in this study for comparative and mechanistic investigations. The designed compounds were synthesized and screened for their inhibitory activity against the two ureases. Compound 2 inhibited H. pylori and Jack bean ureases with IC50 values of 0.11; and 0.26 mM; respectively. While compound 5 showed IC50 values of 0.01; and 0.29 mM; respectively. Compounds 2 and 5 were docked against Helicobacter pylori urease (PDB ID: 1E9Y; resolution: 3.00 Å) and exhibited correct binding modes with free energy (ΔG) values of -9.74 and -13.82 kcal mol-1; respectively. Further; the in silico ADMET and toxicity properties of 2 and 5 indicated their general safeties and likeness to be used as drugs. Finally, the compounds' safety was authenticated by an in vitro cytotoxicity assay against fibroblast cells.


Subject(s)
Benzimidazoles/chemistry , Enzyme Inhibitors/chemistry , Helicobacter pylori/enzymology , Molecular Docking Simulation , Urease , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Helicobacter pylori/genetics , Urease/antagonists & inhibitors , Urease/biosynthesis , Urease/genetics , Urease/isolation & purification
16.
Biochem J ; 479(2): 145-159, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35050326

ABSTRACT

ATP-binding cassette (ABC) proteins play important roles in cells as importers and exporters but as membrane proteins they are subject to well-known challenges of isolating pure and stable samples for study. One solution to this problem is to use styrene-maleic acid lipid particles (SMALPs). Styrene-maleic acid (SMA) can be added directly to membranes, forming stable nanoparticles incorporating membrane proteins and lipids. Here we use Sav1866, a well-characterised bacterial protein, as a proxy for ABC proteins in general. We show that stable and monodispersed Sav1866 can be purified at high yield using SMA. This protein can be used for biophysical characterisations showing that its overall structure is consistent with existing evidence. However, like other ABC proteins in SMALPs it does not hydrolyse ATP. The lack of ATPase activity in ABC-SMALPs may result from conformational trapping of the proteins in SMALPs. Undertaken in a controlled manner, conformational trapping is a useful tool to stabilise protein samples into a single conformation for structural studies. Due to their inability to hydrolyse ATP, the conformation of Sav1866-SMALPs cannot be altered using ATP and vanadate after purification. To achieve controlled trapping of Sav1866-SMALPs we show that Sav1866 in crude membranes can be incubated with ATP, magnesium and sodium orthovanadate. Subsequent solubilisation and purification with SMA produces a sample of Sav1866-SMALPs with enhanced stability, and in a single conformational state. This method may be generally applicable to vanadate-sensitive ABC proteins and overcomes a limitation of the SMALP system for the study of this protein family.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Liposomes/chemistry , Maleates/chemistry , Nanoparticles/chemistry , Polystyrenes/chemistry , Staphylococcus aureus/chemistry , ATP-Binding Cassette Transporters/isolation & purification , Adenosine Triphosphate/chemistry , Bacterial Proteins/isolation & purification , Hydrolysis , Lipid Bilayers/chemistry , Protein Stability , Protein Structure, Secondary , Scattering, Small Angle , Solubility , X-Ray Diffraction/methods
17.
Microb Cell Fact ; 21(1): 4, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983528

ABSTRACT

Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC-MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 µg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Bacillus/chemistry , Bacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , China , Chromatography, Liquid , Drug Resistance, Multiple, Bacterial , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Tandem Mass Spectrometry
18.
Microb Cell Fact ; 21(1): 15, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35093096

ABSTRACT

BACKGROUND: Tuberculosis currently stands as the second leading cause of deaths worldwide due to single  infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis. RESULTS: We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins. CONCLUSIONS: The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Antitubercular Agents/isolation & purification , Antitubercular Agents/pharmacology , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Drug Stability , Endopeptidase K/metabolism , Hot Temperature , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Mycobacterium bovis/drug effects , Staphylococcus hominis/metabolism
19.
Prep Biochem Biotechnol ; 52(1): 70-79, 2022.
Article in English | MEDLINE | ID: mdl-33941018

ABSTRACT

The newly isolated Burkholderia gladioli BRM58833 strain was shown to secrete an alkaline lipase highly active and stable in organic solvents. Lipase production was optimized through the cultivation of the strain by solid-state fermentation in wheat bran. The lipase extraction conditions were also optimized. The low-cost extract obtained has shown a high hydrolytic activity of 1096.7 ± 39.3 U·gds-1 (units per gram of dry solids) against pNPP and 374.2 ± 20.4 U·gds-1 against triolein. Proteomic analysis revealed the optimized extract is composed of two esterases and three true lipases, showing a preference for long-chain substrates. The highest activity was obtained at 50 °C and pH 9. However, the extract maintained more than 50% of its maximum activity between pH 8.0 and 10.0 and throughout the whole temperature range evaluated (32-70 °C). The enzymes were inhibited by SDS, EDTA, ZnSO4 and FeCl3 and activated by FeSO4, MgCl2 and BaCl2. The lipases conserved their activity when incubated in solvents as acetonitrile, diethyl ether, n-heptane n-hexane, toluene, methanol and t-butanol. The resistance of these lipases to solvents and expressive thermostability when compared to other lipases, reveal their potential both in hydrolysis reactions and in synthesis of esters.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia gladioli/metabolism , Lipase/metabolism , Bacterial Proteins/isolation & purification , Burkholderia gladioli/isolation & purification , Enzyme Stability , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Lipase/isolation & purification , Proteomics , Substrate Specificity
20.
Protein Expr Purif ; 190: 106011, 2022 02.
Article in English | MEDLINE | ID: mdl-34737041

ABSTRACT

Many opportunistic bacteria that infect the upper respiratory tract decorate their cell surface with phosphorylcholine to support colonisation and outgrowth. These surface modifications require the active import of choline from the host environment, a process thought to be mediated by a family of dedicated integral membrane proteins that act as choline permeases. Here, we present the expression and purification of the archetype of these choline transporters, LicB from Haemophilus influenzae. We show that LicB can be recombinantly produced in Escherichia coli and purified to homogeneity in a stable, folded state using the detergent n-dodecyl-ß-d-maltopyranoside. Equilibrium binding studies with the fluorescent ligand dansylcholine suggest that LicB is selective towards choline, with reduced affinity for acetylcholine and no apparent activity towards other small molecules including glycine, carnitine and betaine. We also identify a conserved sequence motif within the LicB family and show that mutations within this motif compromise protein structure and function. Our results are consistent with previous observations that LicB is a specific high-affinity choline transporter, and provide an experimental platform for further studies of this permease family.


Subject(s)
Bacterial Proteins , Gene Expression , Haemophilus influenzae/genetics , Membrane Transport Proteins , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Haemophilus influenzae/enzymology , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...