Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28.811
Filter
1.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710998

ABSTRACT

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Subject(s)
Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
2.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777940

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Staphylococcal Infections , Staphylococcus aureus , Humans , COVID-19/microbiology , COVID-19/epidemiology , COVID-19/virology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Cross-Sectional Studies , Male , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Bacterial Toxins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Comorbidity , Bacterial Proteins/genetics , Virulence/genetics , Nigeria/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Leukocidins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Young Adult
3.
Sci Total Environ ; 932: 173023, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719060

ABSTRACT

This study addresses the increasing concern regarding cyanotoxin contamination of water bodies, highlighting the diversity of these toxins and their potential health implications. Cyanobacteria, which are prevalent in aquatic environments, produce toxic metabolites, raising concerns regarding human exposure and associated health risks, including a potential increase in cancer risk. Although existing research has primarily focused on well-known cyanotoxins, recent technological advancements have revealed numerous unknown cyanotoxins, necessitating a comprehensive assessment of multiple toxin categories. To enhance the cyanotoxin databases, we optimized the CyanoMetDB cyanobacterial secondary metabolites database by incorporating secondary fragmentation patterns using the Mass Frontier fragmentation data prediction software. Water samples from diverse locations in Shanghai were analyzed using high-resolution mass spectrometry. Subsequently, the toxicity of cyanobacterial metabolites in the water samples was examined through acute toxicity assays using the crustacean Thamnocephalus platyurus. After 24 h of exposure, the semi-lethal concentrations (LC50) of the water samples ranged from 0.31 mg L-1 to 1.78 mg L-1 (MC-LR equivalent concentration). Our findings revealed a critical correlation between the overall concentration of cyanobacterial metabolites and toxicity. The robust framework and insights of this study underscore the need for an inclusive approach to water quality management, emphasizing continuous efforts to refine detection methods and comprehend the broader ecological impact of cyanobacterial blooms on aquatic ecosystems.


Subject(s)
Cyanobacteria , Environmental Monitoring , Water Pollutants, Chemical , Cyanobacteria/metabolism , China , Water Pollutants, Chemical/analysis , Microcystins/analysis , Microcystins/metabolism , Bacterial Toxins/analysis , Animals , Secondary Metabolism , Marine Toxins/analysis , Cyanobacteria Toxins , Cities
4.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740721

ABSTRACT

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
5.
Sci Rep ; 14(1): 10758, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730020

ABSTRACT

Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL+ and other lineages, as they display important virulence traits that may negatively impact the management of SAB paediatric patients in Manhiça district, Mozambique.


Subject(s)
Bacteremia , Biofilms , Community-Acquired Infections , Staphylococcal Infections , Staphylococcus aureus , Humans , Mozambique/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Virulence/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Biofilms/growth & development , Child, Preschool , Bacteremia/microbiology , Bacteremia/epidemiology , Community-Acquired Infections/microbiology , Infant , Animals , Exotoxins/genetics , Bacterial Toxins/genetics , Leukocidins/genetics , Virulence Factors/genetics , Female , Male , Moths/microbiology
6.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Article in English | MEDLINE | ID: mdl-38698905

ABSTRACT

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Subject(s)
Bacterial Toxins , SARS-CoV-2 , Synaptogyrins , Virus Internalization , Humans , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Synaptogyrins/metabolism , COVID-19/metabolism , COVID-19/virology , Jurkat Cells , Aggregatibacter actinomycetemcomitans/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Microdomains/metabolism
7.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692315

ABSTRACT

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Microcystins , Brazil/epidemiology , Environmental Monitoring/methods , Microcystins/analysis , Bacterial Toxins/analysis , Marine Toxins/analysis
8.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786590

ABSTRACT

The Drinking Water Directive (EU) 2020/2184 includes the parameter microcystin LR, a cyanotoxin, which drinking water producers need to analyze if the water source has potential for cyanobacterial blooms. In light of the increasing occurrences of cyanobacterial blooms worldwide and given that more than 50 percent of the drinking water in Sweden is produced from surface water, both fresh and brackish, the need for improved knowledge about cyanotoxin occurrence and cyanobacterial diversity has increased. In this study, a total of 98 cyanobacterial blooms were sampled in 2016-2017 and identified based on their toxin production and taxonomical compositions. The surface water samples from freshwater lakes throughout Sweden including brackish water from eight east coast locations along the Baltic Sea were analyzed for their toxin content with LC-MS/MS and taxonomic composition with 16S rRNA amplicon sequencing. Both the extracellular and the total toxin content were analyzed. Microcystin's prevalence was highest with presence in 82% of blooms, of which as a free toxin in 39% of blooms. Saxitoxins were found in 36% of blooms in which the congener decarbamoylsaxitoxin (dcSTX) was detected for the first time in Swedish surface waters at four sampling sites. Anatoxins were most rarely detected, followed by cylindrospermopsin, which were found in 6% and 10% of samples, respectively. As expected, nodularin was detected in samples collected from the Baltic Sea only. The cyanobacterial operational taxonomic units (OTUs) with the highest abundance and prevalence could be annotated to Aphanizomenon NIES-81 and the second most profuse cyanobacterial taxon to Microcystis PCC 7914. In addition, two correlations were found, one between Aphanizomenon NIES-81 and saxitoxins and another between Microcystis PCC 7914 and microcystins. This study is of value to drinking water management and scientists involved in recognizing and controlling toxic cyanobacteria blooms.


Subject(s)
Cyanobacteria , Lakes , Marine Toxins , Microcystins , Sweden , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Microcystins/analysis , Lakes/microbiology , Marine Toxins/analysis , Saxitoxin/analysis , Environmental Monitoring , RNA, Ribosomal, 16S/genetics , Bacterial Toxins/analysis , Cyanobacteria Toxins , Tandem Mass Spectrometry
9.
Toxins (Basel) ; 16(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38787054

ABSTRACT

Pathogenic bacteria produce diverse protein toxins to disturb the host's defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to enter mammalian cells, where they catalyze the modification of cellular proteins. The enzymatic activity is diverse and ranges from ribosyl- or glycosyl-transferase activity, the deamidation of proteins, and adenylate-cyclase activity to proteolytic cleavage. Protein toxins are highly active enzymes often with tight specificity for an intracellular protein or a protein family coupled with the intrinsic capability of entering mammalian cells. A broad understanding of their molecular mechanisms established bacterial toxins as powerful tools for cell biology. Both the enzymatic part and the pore-forming/protein transport capacity are currently used as tools engineered to study signaling pathways or to transport cargo like labeled compounds, nucleic acids, peptides, or proteins directly into the cytosol. Using several representative examples, this review is intended to provide a short overview of the state of the art in the use of bacterial toxins or parts thereof as tools.


Subject(s)
Bacterial Toxins , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Humans , Animals , Protein Transport , Bacteria/metabolism
10.
Toxins (Basel) ; 16(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38787060

ABSTRACT

Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.


Subject(s)
ADP-Ribosylation , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Toxins/metabolism , Adenosine Diphosphate Ribose/metabolism , Phylogeny , Toxin-Antitoxin Systems/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , DNA/metabolism
11.
Cell Mol Life Sci ; 81(1): 230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780625

ABSTRACT

Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.


Subject(s)
Defensins , Drosophila Proteins , Drosophila , Drosophila/classification , Drosophila/genetics , Drosophila/immunology , Drosophila/microbiology , Defensins/chemistry , Defensins/genetics , Defensins/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Animals , Gene Deletion , Gene Duplication , Female , Protein Folding , Amino Acid Motifs , Bacterial Toxins/metabolism , Staphylococcus aureus/physiology
12.
BMC Microbiol ; 24(1): 177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783194

ABSTRACT

BACKGROUND: Clostridioides difficile is the main pathogen of antimicrobial-associated diarrhoea and health care facility-associated infectious diarrhoea. This study aimed to investigate the prevalence, toxin genotypes, and antibiotic resistance of C. difficile among hospitalized patients in Xi'an, China. RESULTS: We isolated and cultured 156 strains of C. difficile, representing 12.67% of the 1231 inpatient stool samples collected. Among the isolates, tcdA + B + strains were predominant, accounting for 78.2% (122/156), followed by 27 tcdA-B + strains (27/156, 17.3%) and 6 binary toxin gene-positive strains. The positive rates of three regulatory genes, tcdC, tcdR, and tcdE, were 89.1% (139/156), 96.8% (151/156), and 100%, respectively. All isolates were sensitive to metronidazole, and the resistance rates to clindamycin and cephalosporins were also high. Six strains were found to be resistant to vancomycin. CONCLUSION: Currently, the prevalence rate of C. difficile infection (CDI) in Xi'an is 12.67% (156/1231), with the major toxin genotype of the isolates being tcdA + tcdB + cdtA-/B-. Metronidazole and vancomycin were still effective drugs for the treatment of CDI, but we should pay attention to antibiotic management and epidemiological surveillance of CDI.


Subject(s)
Anti-Bacterial Agents , Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Feces , Genotype , Hospitals , Clostridioides difficile/genetics , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Clostridioides difficile/classification , Humans , China/epidemiology , Anti-Bacterial Agents/pharmacology , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Bacterial Toxins/genetics , Hospitals/statistics & numerical data , Feces/microbiology , Drug Resistance, Bacterial/genetics , Prevalence , Microbial Sensitivity Tests , Female , Middle Aged , Male , Aged , Adult , Bacterial Proteins/genetics , Diarrhea/microbiology , Diarrhea/epidemiology , Metronidazole/pharmacology , Young Adult , Enterotoxins/genetics , Adolescent , Vancomycin/pharmacology , Clindamycin/pharmacology , Aged, 80 and over
13.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791369

ABSTRACT

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Subject(s)
Apoptosis , Bacterial Proteins , Bacterial Toxins , Interleukin-8 , Pasteurella multocida , Interleukin-8/metabolism , Interleukin-8/genetics , Animals , Pasteurella multocida/genetics , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Apoptosis/genetics , Swine , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Caspase 8/metabolism , Caspase 8/genetics , Gene Knockout Techniques , CRISPR-Cas Systems
14.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791367

ABSTRACT

The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three ß-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these ß-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.


Subject(s)
Bacillus cereus , Bacterial Toxins , Hemolysin Proteins , Staphylococcus aureus , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacillus cereus/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Staphylococcus aureus/metabolism , Amino Acid Sequence , Hemolysis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Models, Molecular , Animals , Antibodies, Monoclonal/chemistry , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
15.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757742

ABSTRACT

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Subject(s)
Insulin , Protein Aggregates , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Humans , Insulin/metabolism , Insulin/chemistry , Protein Aggregates/drug effects , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Amyloid/chemistry , Amyloid/metabolism
16.
ACS Nano ; 18(19): 12412-12426, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693619

ABSTRACT

Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.


Subject(s)
Bacterial Toxins , Nanopores , Polysaccharides , Pore Forming Cytotoxic Proteins , Polysaccharides/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Molecular Docking Simulation , Mutation
17.
Environ Microbiol ; 26(5): e16654, 2024 May.
Article in English | MEDLINE | ID: mdl-38779707

ABSTRACT

Vibrios, a group of bacteria that are among the most abundant in marine environments, include several species such as Vibrio cholerae and Vibrio parahaemolyticus, which can be pathogenic to humans. Some species of Vibrio contain prophages within their genomes. These prophages can carry genes that code for toxins, such as the zonula occludens toxin (Zot), which contribute to bacterial virulence. Understanding the association between different Vibrio species, prophages and Zot genes can provide insights into their ecological interactions. In this study, we evaluated 4619 Vibrio genomes from 127 species to detect the presence of prophages carrying the Zot toxin. We found 2030 potential prophages with zot-like genes in 43 Vibrio species, showing a non-random association within a primarily modular interaction network. Some prophages, such as CTX or Vf33, were associated with specific species. In contrast, prophages phiVCY and VfO3K6 were found in 28 and 20 Vibrio species, respectively. We also identified six clusters of Zot-like sequences in prophages, with the ZOT2 cluster being the most frequent, present in 34 Vibrio species. This analysis helps to understand the distribution patterns of zot-containing prophages across Vibrio genomes and the potential routes of Zot-like toxin dissemination.


Subject(s)
Genome, Bacterial , Prophages , Vibrio , Prophages/genetics , Vibrio/genetics , Vibrio/virology , Bacterial Toxins/genetics , Bacterial Proteins/genetics , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/virology , Phylogeny , Endotoxins
18.
Toxins (Basel) ; 16(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668615

ABSTRACT

Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.


Subject(s)
Cyanobacteria , Fresh Water , Invertebrates , Cyanobacteria/metabolism , Animals , Fresh Water/microbiology , Ecosystem , Bacterial Toxins/toxicity , Biodiversity
19.
Toxins (Basel) ; 16(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38668607

ABSTRACT

Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.


Subject(s)
Bacterial Toxins , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Humans , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity , Bacteria/metabolism , Evolution, Molecular
20.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670939

ABSTRACT

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Hemolysis , Streptococcus pneumoniae , Streptolysins , Streptolysins/metabolism , Streptolysins/chemistry , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Streptococcus pneumoniae/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/antagonists & inhibitors , Hemolysis/drug effects , Hemolysin Proteins/metabolism , Hemolysin Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Cholesterol/metabolism , Cryoelectron Microscopy , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...