Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.472
Filter
1.
Microbiologyopen ; 13(3): e1411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706434

ABSTRACT

Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.


Subject(s)
Bacteriuria , Escherichia coli Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Bacteriuria/microbiology , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Bacteriocins/pharmacology , Bacteriocins/genetics , Nephelometry and Turbidimetry , Biological Assay/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology
2.
Genomics ; 116(3): 110855, 2024 May.
Article in English | MEDLINE | ID: mdl-38703968

ABSTRACT

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Subject(s)
Clostridium butyricum , Genome, Bacterial , Phylogeny , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Whole Genome Sequencing , Bacteriocins/genetics , Bacteriocins/biosynthesis , Industrial Microbiology , Botulinum Toxins/genetics , Virulence Factors/genetics
3.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38806244

ABSTRACT

Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.


Subject(s)
Coagulase , Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Microbiota , Skin , Staphylococcus , Dermatitis, Atopic/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Skin/microbiology , Child , Coagulase/genetics , Coagulase/metabolism , Staphylococcus/genetics , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Child, Preschool , Microbial Sensitivity Tests
4.
Benef Microbes ; 15(2): 211-225, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38688481

ABSTRACT

Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.


Subject(s)
Bacteriocins , Enterococcus faecium , Phylogeny , Probiotics , Enterococcus faecium/genetics , Enterococcus faecium/classification , Enterococcus faecium/physiology , Bacteriocins/genetics , Bacteriocins/metabolism , Humans , Antibiosis , Plasmids/genetics , Multigene Family , HT29 Cells
5.
Food Chem ; 447: 138962, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518614

ABSTRACT

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Subject(s)
Bacteriocins , Capsicum , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Capsicum/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Bacterial Agents/chemistry , Plant Diseases/microbiology
6.
Arch Microbiol ; 206(4): 143, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443732

ABSTRACT

The probiotic strain Bacillus licheniformis MCC2514 has been shown to produce a strong antibacterial peptide and the whole genome sequence of this strain is also reported in our previous study. The present study is focused on the genome level investigation of this peptide antibiotic and its characterization. Genome mining of the culture revealed the presence of three putative bacteriocin clusters, viz. lichenicidin, sonorensin and lasso peptide. Hence, the mode of action of the peptide was investigated by reporter assay, scanning electron microscopy, and Fourier Transform Infrared spectroscopy. Additionally, the peptide treated groups of Kocuria rhizophila showed a reduction in the fold expression for transcription-related genes. The gene expression studies, quantitative ß-galactosidase induction assay using the RNA stress reporter strain, yvgS along with the homology studies concluded that lasso peptide is responsible for the antibacterial activity of the peptide which acts as an inhibitor of RNA biosynthesis. Gene expression analysis showed a considerable increase in fold expression of lasso peptide genes at various fermentation hours. Also, the peptide was isolated, and its time-kill kinetics and minimum inhibitory concentration against the indicator pathogen K. rhizophila were examined. The peptide was also purified and the molecular weight was determined to be ~ 2 kDa. Our study suggests that this bacteriocin can function as an effective antibacterial agent in food products as well as in therapeutics as it contains lasso peptide, which inhibits the RNA biosynthesis.


Subject(s)
Bacillus licheniformis , Bacteriocins , Bacillus licheniformis/genetics , Multigene Family , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/pharmacology , Peptides , RNA
7.
Sci Rep ; 14(1): 3319, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336830

ABSTRACT

The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.


Subject(s)
Bacteriocins , Lacticaseibacillus paracasei , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Promoter Regions, Genetic , Operon , Gene Expression Regulation, Bacterial
8.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396696

ABSTRACT

The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.


Subject(s)
Bacillus , Bacteriocins , Bacteriocins/genetics , Bacteriocins/pharmacology , Anti-Bacterial Agents/chemistry , Chromatography, Liquid , Escherichia coli/metabolism , Tandem Mass Spectrometry , Bacillus/metabolism
9.
Appl Environ Microbiol ; 90(3): e0208423, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38411065

ABSTRACT

Streptococcus mutans is a cariogenic bacterium that produces a variety of bacteriocins and retains resistance to these bacteriocins. In this study, we investigated the susceptibility of 127 S. mutans strains to nukacins produced by Staphylococcus spp., which are commensal bacteria in humans. We detected diverse susceptibilities among strains. Nineteen strains had a disrupted LctF (type I), which is responsible for nukacin susceptibility, whereas the remaining 108 strains had an intact LctF (type II) and displayed resistance to nukacins. However, the type I strains still showed resistance to nukacins to some extent. Interestingly, 18/19 (94.7%) type I strains carried a mukA-T locus, which is related to the synthesis of mutacin K8, and mukFEG, an ABC transporter. In contrast, among type II strains, only 6/108 strains (5.6%) had both the mukA-T locus and mukFEG, 19/108 strains (17.6%) carried only mukFEG, and 83/108 strains (76.9%) harbored neither mukA-T nor mukFEG. We also found that MukF had two variants: 305 amino acids (type α) and 302 amino acids (type ß). All type I strains showed a type α (MukFα), whereas most type II strains with mukFEG (22/25 strains) had a type ß (MukFß). Then, we constructed a mukFEG-deletion mutant complemented with MukFαEG or MukFßEG and found that only MukFαEG was involved in nukacin resistance. The nukacin resistance capability of type II-LctFEG was stronger than that of MukFαEG. In conclusion, we identified a novel nukacin resistance factor, MukFEG, and either LctFEG or MukFEG was active in most strains via genetic polymorphisms depending on mukA-T genes. IMPORTANCE: Streptococcus mutans is an important pathogenic bacterium not only for dental caries but also for systemic diseases. S. mutans is known to produce a variety of bacteriocins and to retain resistance these bacteriocins. In this study, two ABC transporters, LctFEG and MukFEG, were implicated in nukacin resistance and each ABC transporter has two subtypes, active and inactive. Of the two ABC transporters, only one ABC transporter was always resistant, while the other ABC transporter was inactivated by genetic mutation. Interestingly, this phenomenon was defined by the presence or absence of the mutacin K8 synthesis gene region, one of the bacteriocins of S. mutans. This suggests that the resistance acquisition is tightly controlled in each strain. This study provides important evidence that the insertion of bacteriocin synthesis genes is involved in the induction of genetic polymorphisms and suggests that bacteriocin synthesis genes may play an important role in bacterial evolution.


Subject(s)
Bacteriocins , Dental Caries , Humans , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Polymorphism, Genetic , Amino Acids/metabolism
10.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301890

ABSTRACT

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Subject(s)
Bacteriocins , Klebsiella pneumoniae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/pharmacology , Bacteriocins/toxicity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Porins/genetics , Porins/metabolism , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Drug Resistance, Multiple, Bacterial/drug effects
11.
Microbiol Res ; 282: 127640, 2024 May.
Article in English | MEDLINE | ID: mdl-38350171

ABSTRACT

Antimicrobial peptides (AMPs) show promise as alternatives to traditional antibiotics for treating drug-resistant infections. Their adaptability and diverse sequence possibilities allow for rational design by modulating physicochemical determinants to achieve desired biological properties, transforming them into peptides for potential new therapies. Nisin, one of the best-studied AMPs, is believed to have potential to be used as a therapeutic, particularly against antibiotic-resistant bacteria. However, its instability in physiological conditions limits its use in clinical applications and pharmaceutical development. Exploration of new natural variants of nisin has uncovered diverse properties using different domains. Shuffling peptide modules can fine-tune the chemical properties of these molecules, potentially enhancing stability while maintaining or improving antimicrobial activity. In this study, hybrid AMPs were created by combining domains from three unique nisin variants, i.e. nisin A, cesin and rombocin, leading to the identification of a promising variant, named cerocin A, which harbours only 25 amino acids compared to the typical 31-35 amino acid length of nisin. Cerocin A demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), approaching that of nisin itself. Cerocin A's mode of action involves a dual mechanism through the combination of two domains, consisting of a small ring/domain (6 amino acids) from the C-terminal end of rombocin attached to the preceding peptide of cesin, changing it from a bacteriostatic to a bactericidal peptide. Further mutation studies identified a new variant, cerocin V, with significantly improved resistance against trypsin degradation, while maintaining high potency. Importantly, cerocin V showed no undesired toxic effects on human red blood cells and remained stable in human plasma. In conclusion, we demonstrate that peptide construction using domain engineering is an effective strategy for manipulating both biological and physicochemical aspects, leading to the creation of novel bioactive molecules with desired properties. These constructs are appealing candidates for further optimization and development as novel antibiotics.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Nisin , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteriocins/genetics , Bacteriocins/pharmacology , Nisin/genetics , Nisin/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Amino Acids , Microbial Sensitivity Tests
12.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38407259

ABSTRACT

Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.


Subject(s)
Bacteriocins , Genome-Wide Association Study , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Immunity, Innate , Enterobacteriaceae/genetics , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Peptides
13.
Sci Total Environ ; 917: 170412, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38281634

ABSTRACT

Multidrug-resistant (MDR) bacteria are widespread in the environment and pose a serious threat to public health. It has been shown that bacteriocins have a great potential in controlling MDR pathogens, including Staphylococcus aureus. A previously reported Lactobacillus salivarius bacteriocin XJS01 exhibited good antibacterial activity against MDR S. aureus 2612:1606BL1486 (henceforth referred to as S. aureus_26), but its molecular mechanism remains unknown. Herein, we investigated the antibacterial mechanism of XJS01 on S. aureus_26 using an approach combining transcriptomics and metabolomics. The results showed that XJS01 induced significant changes at both transcriptional and metabolic levels in S. aureus_26. In total, 231 differentially expressed genes (DEGs) and 206 differentially abundance metabolites (DAMs) were identified in S. aureus_26 treated with 1 × MIC (minimum inhibition concentration) XJS01 compared with untreated (XJS01-free) cells (control). Functional analysis revealed that these DEGs and DAMs, alone with the related pathways and biological processes, were typically involved in stress response, being primarily related to metal uptake, cell virulence, self-help mechanism, amino acid and energy metabolism, bacterial stress response (e.g., two-component system), and membrane transport (e.g., phosphotransferase system). Overall, this study uncovered the multi-target effects of bacteriocins against MDR S. aureus at the genome-wide transcriptional and metabolic levels. These findings might be useful in the development of bacteriocins for the control of MDR S. aureus and other drug-resistant bacteria.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/pharmacology , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Microbial Sensitivity Tests , Gene Expression Profiling
14.
Appl Microbiol Biotechnol ; 108(1): 122, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229328

ABSTRACT

The myxobacteria are an attractive bioresource for bioactive compounds since the large size genome contains many biosynthetic gene clusters of secondary metabolites. The genome of the myxobacterium Melittangium boletus contains three biosynthetic gene clusters for lanthipeptide production. One of the gene clusters includes genes coding lanthipeptide precursor (melA), class II lanthipeptide synthetase (melM), and transporter (melT). The amino acid sequence of melA indicated similarity with that of known lanthipeptides mersacidin and lichenicidin A1 by the alignment. To perform heterologous production of new lanthipeptides, the expression vector containing the essential genes (melA and melM) was constructed by utilizing codon-optimized synthetic genes. The co-expression of two genes in the host bacterial cells of Escherichia coli BL21 (DE3) afforded new lanthipeptides named melittapeptins A-C. The structures of melittapeptins A-C including lanthionine/methyllanthionine bridge pattern were proposed based on protease digestion and MS/MS experiments. The native strain of M. boletus did not produce melittapeptins A-C, so heterologous production using the biosynthetic gene cluster was effective in obtaining the lanthipeptides. Melittapeptins A-C showed specific and potent antibacterial activity to the Gram-positive bacterium Micrococcus luteus. To the best of our knowledge, this is the first report of antibacterial lanthipeptides derived from myxobacterial origin. KEY POINTS: • New lanthipeptides melittapeptins were heterologously produced in Escherichia coli. • Melittapeptins showed specific antibacterial activity against Micrococcus luteus. • Melittapeptins were the first antibacterial lanthipeptides of myxobacterial origin.


Subject(s)
Bacteriocins , Myxococcales , Tandem Mass Spectrometry , Bacteriocins/genetics , Bacteriocins/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Myxococcales/genetics , Myxococcales/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
15.
Probiotics Antimicrob Proteins ; 16(2): 394-412, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36928486

ABSTRACT

Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.


Subject(s)
Bacteriocins , Listeria , Humans , Animals , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/chemistry , Pediococcus pentosaceus/genetics , RNA, Ribosomal, 16S/genetics , Pediococcus , Anti-Bacterial Agents/pharmacology , Plasmids , Salmon/microbiology , Antimicrobial Peptides
16.
Vet Res Commun ; 48(1): 381-390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37707656

ABSTRACT

Desirable characteristics of Staphylococcus sp., Streptococcus sp., Bacillus sp., Klebsiella sp., Escherichia coli, and Pseudomonas pseudoalcaligenes isolated from the trachea of healthy turkeys were evaluated as probiotic candidates in the search for new alternatives to solve antimicrobial resistance issues in poultry. In current study phenotypic and genotypic capacity to produce bacteriocin-like substances, efficacy to inhibit the growth of avian pathogens, susceptibility to antimicrobials of bacteria isolated from the respiratory microbiota of healthy turkeys, and the presence of virulence-associated genes (VAGs) predictors of Avian Pathogenic Escherichia coli (APEC) were evaluated. Nine E. coli and one Klebsiella sp. strains produced bacteriocin-like substances, and all harbored the cvaA gene. Some strains also showed antagonistic activity against APEC. Multidrug-resistant profile was found in 54% of the strains. Six strains of bacteriocin-like substances producing E. coli also harbored 3-5 VAGs. The study showed that two bacterial genuses (Klebsiella sp. and E. coli) present desirable probiotic characteristics. Our results identified strains with potential for poultry's respiratory probiotic.


Subject(s)
Bacteriocins , Escherichia coli Infections , Poultry Diseases , Animals , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Turkeys , Chickens , Bacteriocins/genetics , Bacteriocins/pharmacology , Poultry Diseases/microbiology , Anti-Bacterial Agents/pharmacology
17.
Microbiol Spectr ; 12(1): e0313023, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38047704

ABSTRACT

IMPORTANCE: Many bacteriocins target the sugar transporter mannose phosphotransferase system (man-PTS) to exert their antibacterial activity. The elucidation in recent years of the structure of man-PTS has facilitated our understanding of how bacteriocins might interact with the receptor and which domains of the transporter are involved in bacteriocin resistance. Here, we show that missense mutations in the sugar-binding domain of the man-PTS not only impede the uptake of sugars but also prevent the antibacterial activity of the bacteriocins lactococcin A and garvicin Q.


Subject(s)
Bacteriocins , Lactococcus lactis , Humans , Lactococcus lactis/genetics , Mannose , Mutation, Missense , Bacteriocins/genetics , Bacteriocins/pharmacology , Anti-Bacterial Agents , Phosphotransferases/genetics
18.
Food Funct ; 15(2): 747-765, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38117188

ABSTRACT

Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.


Subject(s)
Bacillus , Bacteriocins , Probiotics , Animals , Mice , Fruit/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Dairy Products , Probiotics/chemistry
19.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38148133

ABSTRACT

The whole genome sequence (WGS) of Bacillus coagulans BCP92 is reported along with its genomic analysis of probiotics and safety features. The identification of bacterial strain was carried out using the 16S rDNA sequencing method. Furthermore, gene-related probiotic features, safety assessment (by in vitro and in silico), and genome stability were also studied using the WGS analysis for the possible use of the bacterial strain as a probiotic. From the BLAST analysis, bacterial strain was identified as Bacillus (Heyndrickxia) coagulans. WGS analysis indicated that the genome consists of a 3 475 658 bp and a GC-content of 46.35%. Genome mining of BCP92 revealed that the strain is consist of coding sequences for d-lactate dehydrogenase and l-lactate dehydrogenases, 36 genes involved in fermentation activities, 29 stress-responsive as well as many adhesions related genes. The genome, also possessing genes, is encoded for the synthesis of novel circular bacteriocin. Using an in-silico approach for the bacterial genome study, it was possible to determine that the Bacillus (Heyndrickxia) coagulans strain BCP92 contains genes that are encoded for the probiotic abilities and did not harbour genes that are risk associated, thus confirming the strain's safety and suitability as a probiotic to be used for human application.


Subject(s)
Bacillus coagulans , Bacillus , Bacteriocins , Probiotics , Humans , Bacillus coagulans/genetics , Bacillus/genetics , Bacteriocins/genetics , Genome, Bacterial
20.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040658

ABSTRACT

AIM: Aeribacillus pallidus PI8 is a Gram-positive thermophilic bacterium that produces thermostable antimicrobial substances against several bacterial species, including Geobacillus kaustophilus HTA426. In the present study, we sought to identify genes of PI8 with antibacterial activity. METHODS AND RESULTS: We isolated, cloned, and characterized a thermostable bacteriocin from A. pallidus PI8 and named it pallidocyclin. Mass spectrometric analyses of pallidocyclin revealed that it had a circular peptide structure, and its precursor was encoded by pcynA in the PI8 genome. pcynA is the second gene within the pcynBACDEF operon. Expression of the full-length pcynBACDEF operon in Bacillus subtilis produced intact pallidocyclin, whereas expression of pcynF in G. kaustophilus HTA426 conferred resistance to pallidocyclin. CONCLUSION: Aeribacillus pallidus PI8 possesses the pcynBACDEF operon to produce pallidocyclin. pcynA encodes the pallidocyclin precursor, and pcynF acts as an antagonist of pallidocyclin.


Subject(s)
Bacillaceae , Bacteriocins , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacillaceae/genetics , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...