Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.098
Filter
1.
Curr Microbiol ; 81(7): 204, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831133

ABSTRACT

Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.


Subject(s)
Bacteriophages , Erwinia amylovora , Genome, Viral , Plant Diseases , Erwinia amylovora/virology , Erwinia amylovora/genetics , Plant Diseases/virology , Plant Diseases/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Phylogeny , Host Specificity , Genomics , Malus/microbiology , Malus/virology , Soil Microbiology
2.
BMC Genomics ; 25(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824509

ABSTRACT

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.


Subject(s)
Genome, Bacterial , Genomics , Phylogeny , Prophages , Treponema , Prophages/genetics , Treponema/genetics , Treponema/virology , Genomics/methods , Computational Biology/methods , Genome, Viral , Bacteriophages/genetics , Bacteriophages/classification
3.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704526

ABSTRACT

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Subject(s)
Prophages , Recombination, Genetic , Prophages/genetics , Campylobacter/virology , Campylobacter/genetics , Staphylococcus/virology , Staphylococcus/genetics , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Listeria/virology , Listeria/genetics , Salmonella/virology , Salmonella/genetics , Evolution, Molecular , Bacteria/virology , Bacteria/genetics
4.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717818

ABSTRACT

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Subject(s)
Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
5.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38814706

ABSTRACT

High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class Caudoviricetes which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , High-Throughput Nucleotide Sequencing , Genetic Variation , Humans , Animals , Evolution, Molecular , Viral Proteins/genetics
6.
Front Cell Infect Microbiol ; 14: 1382145, 2024.
Article in English | MEDLINE | ID: mdl-38736748

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a new threat in recent years, owing to its rapidly increasing resistance to antibiotics and new effective therapies are needed to combat this pathogen. Phage therapy is considered to be the most promising alternative for treating CRAB infections. In this study, a novel phage, Ab_WF01, which can lyse clinical CRAB, was isolated and characterized from hospital sewage. The multiplicity of infection, morphology, one-step growth curve, stability, sensitivity, and lytic activity of the phage were also investigated. The genome of phage Ab_WF01 was 41, 317 bp in size with a GC content of 39.12% and encoded 51 open reading frames (ORFs). tRNA, virulence, and antibiotic resistance genes were not detected in the phage genome. Comparative genomic and phylogenetic analyses suggest that phage Ab_WF01 is a novel species of the genus Friunavirus, subfamily Beijerinckvirinae, and family Autographiviridae. The in vivo results showed that phage Ab_WF01 significantly increased the survival rate of CRAB-infected Galleria mellonella (from 0% to 70% at 48 h) and mice (from 0% to 60% for 7 days). Moreover, after day 3 post-infection, phage Ab_WF01 reduced inflammatory response, with strongly ameliorated histological damage and bacterial clearance in infected tissue organs (lungs, liver, and spleen) in mouse CRAB infection model. Taken together, these results show that phage Ab_WF01 holds great promise as a potential alternative agent with excellent stability for against CRAB infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Carbapenems , Genome, Viral , Phage Therapy , Phylogeny , Sewage , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Sewage/virology , Sewage/microbiology , Animals , Carbapenems/pharmacology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Acinetobacter Infections/microbiology , Mice , Anti-Bacterial Agents/pharmacology , Open Reading Frames , Disease Models, Animal , Moths/virology , Moths/microbiology , Base Composition
7.
Nat Commun ; 15(1): 4089, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744831

ABSTRACT

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Subject(s)
Bacteriophages , Metagenome , Metagenomics , Oceans and Seas , Seawater , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Seawater/virology , Seawater/microbiology , Metagenome/genetics , Genome, Viral/genetics , Phylogeny , Prochlorococcus/virology , Prochlorococcus/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/virology , Bacteria/classification , Bacteria/isolation & purification
8.
Methods Mol Biol ; 2802: 427-453, 2024.
Article in English | MEDLINE | ID: mdl-38819567

ABSTRACT

Bacterial viruses (bacteriophages or phages) are the most abundant and diverse biological entities on Earth. There is a renewed worldwide interest in phage-centered research motivated by their enormous potential as antimicrobials to cope with multidrug-resistant pathogens. An ever-growing number of complete phage genomes are becoming available, derived either from newly isolated phages (cultivated phages) or recovered from metagenomic sequencing data (uncultivated phages). Robust comparative analysis is crucial for a comprehensive understanding of genotypic variations of phages and their related evolutionary processes, and to investigate the interaction mechanisms between phages and their hosts. In this chapter, we present a protocol for phage comparative genomics employing tools selected out of the many currently available, focusing on complete genomes of phages classified in the class Caudoviricetes. This protocol provides accurate identification of similarities, differences, and patterns among new and previously known complete phage genomes as well as phage clustering and taxonomic classification.


Subject(s)
Bacteriophages , Genome, Viral , Genomics , Genome, Viral/genetics , Bacteriophages/genetics , Bacteriophages/classification , Genomics/methods , Phylogeny , Computational Biology/methods , Metagenomics/methods
9.
Arch Virol ; 169(5): 117, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739272

ABSTRACT

Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.


Subject(s)
Bacteriophages , Base Composition , Genome, Viral , Open Reading Frames , Phylogeny , Xanthomonas , Xanthomonas/virology , Xanthomonas/genetics , Xanthomonas/classification , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , DNA, Viral/genetics , Sequence Analysis, DNA , Lakes/virology , Lakes/microbiology
10.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793629

ABSTRACT

Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Yersinia pestis , Yersinia pestis/virology , Yersinia pestis/genetics , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Animals , Evolution, Molecular , Dogs , Plague/microbiology
11.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793652

ABSTRACT

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Subject(s)
Acinetobacter , Bacterial Capsules , Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/classification , Acinetobacter/virology , Acinetobacter/genetics , Acinetobacter/enzymology , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Acinetobacter baumannii/virology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Glycoside Hydrolases
12.
Virology ; 595: 110100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714025

ABSTRACT

Enterobacter cloacae is a clinically significant pathogen due to its multi-resistance to antibiotics, presenting a challenge in the treatment of infections. As concerns over antibiotic resistance escalate, novel therapeutic approaches have been explored. Bacteriophages, characterized by their remarkable specificity and ability to self-replicate within target bacteria, are emerging as a promising alternative therapy. In this study, we isolated and partially characterized nine lytic bacteriophages targeting E. cloacae, with two selected for comprehensive genomic analysis based on their host range and bacteriolytic activity. All identified phages exhibited a narrow host range, demonstrated stability within a temperature range of 30-60 °C, displayed pH tolerance from 3 to 10, and showed an excellent bacteriolytic capacity for up to 18 h. Notably, the fully characterized phage genomes revealed an absence of lysogenic, virulence, or antibiotic-resistance genes, positioning them as promising candidates for therapeutic intervention against E. cloacae-related diseases. Nonetheless, translating this knowledge into practical therapeutic applications mandates a deeper understanding of bacteriophage interactions within complex biological environments.


Subject(s)
Bacteriophages , Enterobacter cloacae , Genome, Viral , Genomics , Host Specificity , Enterobacter cloacae/virology , Enterobacter cloacae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Phage Therapy , Enterobacteriaceae Infections/microbiology , Bacteriolysis
13.
Appl Environ Microbiol ; 90(5): e0024624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38597658

ABSTRACT

Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.


Subject(s)
Plasmids , Shewanella , Plasmids/genetics , Shewanella/virology , Shewanella/genetics , Inovirus/genetics , Satellite Viruses/genetics , Genome, Viral , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification
14.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675852

ABSTRACT

Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.


Subject(s)
Bacteriophages , Erwinia amylovora , Soil Microbiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , China , Erwinia amylovora/virology , Erwinia amylovora/drug effects , Genome, Viral , Host Specificity , Hydrogen-Ion Concentration , Phylogeny , Plant Diseases/microbiology , Pyrus/microbiology , Pyrus/virology
15.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675856

ABSTRACT

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Viral Proteins/genetics , Viral Proteins/metabolism , Retroelements , Genetic Variation , Prophages/genetics , DNA, Viral/genetics , DNA Primase/genetics , DNA Primase/metabolism , Genomics/methods , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
16.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675877

ABSTRACT

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Subject(s)
Bacteria , Metagenomics , Sewage , Viruses , Wastewater , Wastewater/virology , Wastewater/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Sewage/virology , Sewage/microbiology , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Virome/genetics , Water Purification , Animals
17.
Viruses ; 16(4)2024 04 20.
Article in English | MEDLINE | ID: mdl-38675982

ABSTRACT

Previous studies have identified diverse bacteriophages that infect Caulobacter vibrioides strain CB15 ranging from small RNA phages to four genera of jumbo phages. In this study, we focus on 20 bacteriophages whose genomes range from 40 to 60 kb in length. Genome comparisons indicated that these diverse phages represent six Caulobacter phage genera and one additional genus that includes both Caulobacter and Brevundimonas phages. Within species, comparisons revealed that both single base changes and inserted or deleted genetic material cause the genomes of closely related phages to diverge. Among genera, the basic gene order and the orientation of key genes were retained with most of the observed variation occurring at ends of the genomes. We hypothesize that the nucleotide sequences of the ends of these phage genomes are less important than the need to maintain the size of the genome and the stability of the corresponding mRNAs.


Subject(s)
Bacteriophages , Caulobacter , Evolution, Molecular , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Caulobacter/virology , Caulobacter/genetics , Gene Order
18.
Can J Microbiol ; 70(6): 213-225, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447122

ABSTRACT

Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.


Subject(s)
Bacteriophages , Genome, Viral , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/genetics , Plasmids/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Bacteriophages/classification , Klebsiella Infections/microbiology , Whole Genome Sequencing , Genomics
19.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329345

ABSTRACT

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Subject(s)
Bacteriophages , Hafnia alvei , Host Tropism , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Enterobacter/chemistry , Enterobacter/virology , Genome, Viral/genetics , Hafnia alvei/classification , Hafnia alvei/genetics , Hafnia alvei/virology , Scientific Experimental Error , Sequence Analysis, DNA
20.
Arch Virol ; 168(8): 216, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525023

ABSTRACT

In this study, a new Salmonella phage, NX263, was isolated from sewage. This phage could lyse 90.57% (48/53) of the bacterial strains tested and showed good activity over a wide range of temperature (up to 60°C) and pH (5-10). Phylogenetic analysis showed that it should be classified as a member of the genus Skatevirus. The genome of phage NX263 is 46,574 bp in length with a GC content of 45.52%. It contains 89 open reading frames and two tRNA genes. No lysogeny, drug resistance, or virulence-associated genes were identified in the genome sequence, suggesting that this phage could potentially be used to treat Salmonella Pullorum infections.


Subject(s)
Bacteriophages , Genome, Viral , Salmonella enterica , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Genome, Viral/genetics , Phylogeny , Salmonella enterica/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...