Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.813
Filter
3.
Nat Microbiol ; 9(6): 1434-1453, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834776

ABSTRACT

In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127-0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage-antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363 .


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Bacteriophages , Phage Therapy , Humans , Retrospective Studies , Phage Therapy/methods , Bacteriophages/physiology , Bacteriophages/genetics , Female , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , Adult , Bacterial Infections/therapy , Treatment Outcome , Aged , Precision Medicine/methods , Adolescent , Young Adult , Bacteria/virology , Bacteria/genetics , Child , Aged, 80 and over , Child, Preschool , Belgium , Infant
4.
Nat Commun ; 15(1): 4704, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830845

ABSTRACT

Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.


Subject(s)
Diet, High-Fat , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Metabolic Syndrome , Mice, Inbred C57BL , Mice, Obese , Obesity , Virome , Animals , Male , Metabolic Syndrome/therapy , Obesity/therapy , Mice , Diet, High-Fat/adverse effects , Dysbiosis/therapy , Feces/virology , Feces/microbiology , Bacteriophages/physiology , Blood Glucose/metabolism , Disease Models, Animal , Liver/pathology , Liver/metabolism , Adipose Tissue
5.
Curr Microbiol ; 81(7): 215, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849666

ABSTRACT

Non-tailed icosahedral phages belonging to families Fiersviridae (phages MS2 and Qbeta), Tectiviridae (PRD1) and Microviridae (phiX174) have not been considered in detail so far as potential antibacterial agents. The aim of the study was to examine various aspects of the applicability of these phages as antibacterial agents. Antibacterial potential of four phages was investigated via bacterial growth and biofilm formation inhibition, lytic spectra determination, and phage safety examination. The phage phiX174 was combined with different classes of antibiotics to evaluate potential synergistic interactions. In addition, the incidence of phiX174-insensitive mutants was analyzed. The results showed that only phiX174 out of four phages tested against their corresponding hosts inhibited bacterial growth for > 90% at different multiplicity of infection and that only this phage considerably prevented biofilm formation. Although all phages show the absence of potentially undesirable genes, they also have extremely narrow lytic spectra. The synergism was determined between phage phiX174 and ceftazidime, ceftriaxone, ciprofloxacin, macrolides, and chloramphenicol. It was shown that the simultaneous application of agents is more effective than successive treatment, where one agent is applied first. The analysis of the appearance of phiX174 bacteriophage-insensitive mutants showed that mutations occur with a frequency of 10-3. The examined non-tailed phages have a limited potential for use as antibacterial agents, primarily due to a very narrow lytic spectrum and the high frequency of resistant mutants appearance, but Microviridae can be considered in the future as biocontrol agents against susceptible strains of E. coli in combinations with conventional antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Bacteriophages/genetics , Bacteriophages/physiology , Escherichia coli/virology , Escherichia coli/drug effects , Bacteriophage phi X 174/drug effects , Bacteriophage phi X 174/genetics , Bacteria/drug effects , Bacteria/virology , Mutation
6.
Arch Virol ; 169(7): 142, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851653

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections, and strains that are resistant to antibiotics are a major problem in treating these infections. Phage therapy is a promising alternative approach that can be used to treat infections caused by polyresistant bacterial strains. In the present study, 16 bacteriophages isolated from sewage and surface water were investigated. Phage host specificity was tested on a collection of 77 UPEC strains. The phages infected 2-44 strains, and 80% of the strains were infected by at least one phage. The susceptible E. coli strains belonged predominantly to the B2 phylogenetic group, including strains of two clones, CC131 and CC73, that have a worldwide distribution. All of the phages belonged to class Caudoviricetes and were identified as members of the families Straboviridae, Autographiviridae, and Drexlerviridae and the genera Kagunavirus, Justusliebigvirus, and Murrayvirus. A phage cocktail composed of six phages - four members of the family Straboviridae and two members of the family Autographiviridae - was prepared, and its antibacterial activity was tested in liquid medium. Complete suppression of bacterial growth was observed after 5-22 hours of cultivation, followed by partial regrowth. At 24 hours postinfection, the cocktail suppressed bacterial growth to 43-92% of control values. Similar results were obtained when testing the activity of the phage cocktail in LB and in artificial urine medium. The results indicate that our phage cocktail has potential to inhibit bacterial growth during infection, and they will therefore be preserved in the national phage bank, serving as valuable resources for therapeutic applications.


Subject(s)
Drug Resistance, Multiple, Bacterial , Host Specificity , Phylogeny , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/virology , Uropathogenic Escherichia coli/drug effects , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Sewage/virology , Phage Therapy/methods , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy
7.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704526

ABSTRACT

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Subject(s)
Prophages , Recombination, Genetic , Prophages/genetics , Campylobacter/virology , Campylobacter/genetics , Staphylococcus/virology , Staphylococcus/genetics , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Listeria/virology , Listeria/genetics , Salmonella/virology , Salmonella/genetics , Evolution, Molecular , Bacteria/virology , Bacteria/genetics
8.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743467

ABSTRACT

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Virulence , Acinetobacter Infections/microbiology , Animals , Moths/microbiology , Moths/virology , Phage Therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Larva/microbiology , Larva/virology
9.
Vet Res ; 55(1): 59, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715095

ABSTRACT

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Subject(s)
Bacteriophages , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/physiology , Mice , Klebsiella Infections/therapy , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , Bacteriophages/physiology , Disease Models, Animal , Phage Therapy , Female , Glycoside Hydrolases/metabolism , Cattle
10.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723602

ABSTRACT

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Subject(s)
Prophages , Vibrio cholerae , Vibrio cholerae/genetics , Prophages/genetics , Prophages/physiology , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Genome, Bacterial , Bacteriophages/genetics , Bacteriophages/physiology , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
11.
Front Cell Infect Microbiol ; 14: 1382145, 2024.
Article in English | MEDLINE | ID: mdl-38736748

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a new threat in recent years, owing to its rapidly increasing resistance to antibiotics and new effective therapies are needed to combat this pathogen. Phage therapy is considered to be the most promising alternative for treating CRAB infections. In this study, a novel phage, Ab_WF01, which can lyse clinical CRAB, was isolated and characterized from hospital sewage. The multiplicity of infection, morphology, one-step growth curve, stability, sensitivity, and lytic activity of the phage were also investigated. The genome of phage Ab_WF01 was 41, 317 bp in size with a GC content of 39.12% and encoded 51 open reading frames (ORFs). tRNA, virulence, and antibiotic resistance genes were not detected in the phage genome. Comparative genomic and phylogenetic analyses suggest that phage Ab_WF01 is a novel species of the genus Friunavirus, subfamily Beijerinckvirinae, and family Autographiviridae. The in vivo results showed that phage Ab_WF01 significantly increased the survival rate of CRAB-infected Galleria mellonella (from 0% to 70% at 48 h) and mice (from 0% to 60% for 7 days). Moreover, after day 3 post-infection, phage Ab_WF01 reduced inflammatory response, with strongly ameliorated histological damage and bacterial clearance in infected tissue organs (lungs, liver, and spleen) in mouse CRAB infection model. Taken together, these results show that phage Ab_WF01 holds great promise as a potential alternative agent with excellent stability for against CRAB infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Carbapenems , Genome, Viral , Phage Therapy , Phylogeny , Sewage , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Sewage/virology , Sewage/microbiology , Animals , Carbapenems/pharmacology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Acinetobacter Infections/microbiology , Mice , Anti-Bacterial Agents/pharmacology , Open Reading Frames , Disease Models, Animal , Moths/virology , Moths/microbiology , Base Composition
12.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732145

ABSTRACT

Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Cas Systems , Bacteria/genetics , Bacteriophages/physiology , Bacteriophages/genetics , Drug Resistance, Bacterial/genetics , Humans , Bacterial Infections/immunology , Bacterial Infections/microbiology
14.
Nat Commun ; 15(1): 3715, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698041

ABSTRACT

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Subject(s)
Bacteriophages , Ribosomes , Ribosomes/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Phytoplankton/virology , Phytoplankton/genetics , Phytoplankton/metabolism , In Situ Hybridization, Fluorescence , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Ecosystem , Seawater/microbiology , Seawater/virology , Oceans and Seas
15.
Arch Microbiol ; 206(6): 283, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806864

ABSTRACT

The objective of this study was to investigate the effectiveness of a phage cocktail against Pseudomonas fluorescens group and its effect on the microbial, physical and chemical properties of raw milk during different storage conditions. A phage cocktail consisting of Pseudomonas fluorescens, Pseudomonas tolaasii, and Pseudomonas libanensis phages was prepared. As a result, reductions in fluorescent Pseudomonas counts of up to 3.44 log units for the storage at 4 °C and 2.38 log units for the storage at 25 °C were achieved. Following the phage application, it is found that there was no significant difference in the total mesophilic aerobic bacteria and Enterobacteriaceae counts. However, it was observed that the number of lactic acid bacteria was higher in phage-treated groups. The results also showed that pH values in the phage added groups were lower than the others and the highest titratable acidity was obtained only in the bacteria-inoculated group. As a future perspective, this study suggests that, while keeping the number of target microorganisms under control in the milk with the use of phages during storage, the microbiota and accordingly the quality parameters of the milk can be affected. This work contributes to the development of effective strategies for maintaining the quality and extending the shelf life of milk and dairy products.


Subject(s)
Milk , Pseudomonas Phages , Pseudomonas fluorescens , Milk/microbiology , Pseudomonas fluorescens/virology , Animals , Pseudomonas Phages/physiology , Pseudomonas Phages/isolation & purification , Food Microbiology , Hydrogen-Ion Concentration , Bacteriophages/physiology , Bacteriophages/isolation & purification
16.
Front Immunol ; 15: 1398652, 2024.
Article in English | MEDLINE | ID: mdl-38779682

ABSTRACT

In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Phage Therapy , Humans , Phage Therapy/methods , Inflammatory Bowel Diseases/therapy , Bacteriophages/physiology , Animals
17.
Vet Microbiol ; 294: 110133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820726

ABSTRACT

Non-aureus staphylococci (NAS) are an essential group of bacteria causing antimicrobial resistant intramammary infections in livestock, particularly dairy cows. Therefore, bacteriophages emerge as a potent bactericidal agent for NAS mastitis. This study aimed to obtain NAS-specific bacteriophages using bacterial strains isolated from cows with mastitis, subsequently evaluating their morphological, genomic, and lytic characteristics. Four distinct NAS bacteriophages were recovered from sewage or the environment of Chinese dairy farms; PT1-1, PT94, and PT1-9 were isolated using Staphylococcus chromogenes and PT1-4 using Staphylococcus gallinarum. Both PT1-1 (24/54, 44 %) and PT94 (28/54, 52 %) had broader lysis than PT1-4 (3/54, 6 %) and PT1-9 (10/54, 19 %), but PT1-4 and PT1-9 achieved cross-species lysis. All bacteriophages had a short latency period and good environmental tolerance, including surviving at pH=4-10 and at 30-60℃. Except for PT1-9, all bacteriophages had excellent bactericidal efficacy within 5 h of co-culture with host bacteria in vitro at various multiplicity of infection (MOIs). Based on whole genome sequencing, average nucleotide identity (ANI) analysis of PT1-1 and PT94 can be classified as the same species, consistent with whole-genome synteny analysis. Although motifs shared by the 4 bacteriophages differed little from those of other bacteriophages, a phylogenetic tree based on functional proteins indicated their novelty. Moreover, based on whole genome comparisons, we inferred that cross-species lysis of bacteriophage may be related to the presence of "phage tail fiber." In conclusion 4 novel NAS bacteriophages were isolated; they had good biological properties and unique genomes, with potential for NAS mastitis therapy.


Subject(s)
Genome, Viral , Mastitis, Bovine , Sewage , Staphylococcus , Sewage/virology , Sewage/microbiology , Animals , Staphylococcus/virology , Staphylococcus/drug effects , Staphylococcus/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Staphylococcus Phages/genetics , Staphylococcus Phages/physiology , Staphylococcus Phages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteriophages/physiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Phylogeny , Genomics , Whole Genome Sequencing
18.
Nat Commun ; 15(1): 4355, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778023

ABSTRACT

Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.


Subject(s)
Bacteriophages , Host Specificity , Klebsiella , Machine Learning , Bacteriophages/physiology , Klebsiella/virology , Computer Simulation
19.
Commun Biol ; 7(1): 590, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755280

ABSTRACT

Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.


Subject(s)
Viral Tail Proteins , Viral Tail Proteins/metabolism , Viral Tail Proteins/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/metabolism , DNA, Viral/metabolism , DNA, Viral/genetics , Virion/metabolism
20.
BMC Infect Dis ; 24(1): 497, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755537

ABSTRACT

BACKGROUND: In recent years, there has been a growing interest in phage therapy as an effective therapeutic tool against colibacillosis caused by avian pathogenic Escherichia coli (APEC) which resulted from the increasing number of multidrug resistant (MDR) APEC strains. METHODS: In the present study, we reported the characterization of a new lytic bacteriophage (Escherichia phage AG- MK-2022. Basu) isolated from poultry slaughterhouse wastewater. In addition, the in vitro bacteriolytic activity of the newly isolated phage (Escherichia phage AG- MK-2022. Basu) and the Escherichia phage VaT-2019a isolate PE17 (GenBank: MK353636.1) were assessed against MDR- APEC strains (n = 100) isolated from broiler chickens with clinical signs of colibacillosis. RESULTS: Escherichia phage AG- MK-2022. Basu belongs to the Myoviridae family and exhibits a broad host range. Furthermore, the phage showed stability under a wide range of temperatures, pH values and different concentrations of NaCl. Genome analysis of the Escherichia phage AG- MK-2022. Basu revealed that the phage possesses no antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and any E. coli virulence associated genes. In vitro bacterial challenge tests demonstrated that two phages, the Escherichia phage VaT-2019a isolate PE17 and the Escherichia phage AG- MK-2022. Basu exhibited high bactericidal activity against APEC strains and lysed 95% of the tested APEC strains. CONCLUSIONS: The current study findings indicate that both phages could be suggested as safe biocontrol agents and alternatives to antibiotics for controlling MDR-APEC strains isolated from broilers.


Subject(s)
Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Phage Therapy , Poultry Diseases , Animals , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Chickens/microbiology , Poultry Diseases/microbiology , Coliphages/genetics , Coliphages/physiology , Host Specificity , Genome, Viral , Wastewater/microbiology , Wastewater/virology , Myoviridae/genetics , Myoviridae/isolation & purification , Myoviridae/physiology , Myoviridae/classification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...