Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(11): 2109-2115, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34652894

ABSTRACT

Bilin-binding fluorescent proteins like UnaG-bilirubin are noncovalent ligand-dependent reporters for oxygen-free microscopy but are restricted to blue and far-red fluorescence. Here we describe a high-throughput screening approach to provide a new UnaG-ligand pair that can be excited in the 532 nm green excitation microscopy channel. We identified a novel orange UnaG-ligand pair that maximally emits at 581 nm. Whereas the benzothiazole-based ligand itself is nominally fluorescent, the compound binds UnaG with high affinity (Kd = 3 nM) to induce a 2.5-fold fluorescence intensity enhancement and a 10 nm red shift. We demonstrated this pair in the anaerobic fluorescence microscopy of the prevalent gut bacterium Bacteroides thetaiotaomicron and in Escherichia coli. This UnaG-ligand pair can also be coupled to IFP2.0-biliverdin to differentiate cells in mixed-species two-color imaging. Our results demonstrate the versatility of the UnaG ligand-binding pocket and extend the ability to image cells at longer wavelengths in anoxic environments.


Subject(s)
Bacteroides thetaiotaomicron/cytology , Benzothiazoles/chemistry , Escherichia coli/cytology , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Benzothiazoles/metabolism , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , High-Throughput Screening Assays , Ligands , Microscopy, Fluorescence , Protein Binding
2.
J Immunol ; 204(4): 1035-1046, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900343

ABSTRACT

Bacteria express multiple diverse capsular polysaccharides (CPSs) for protection against environmental and host factors, including the host immune system. Using a mouse TCR transgenic CD4+ T cell, BθOM, that is specific for B. thetaiotaomicron and a complete set of single CPS-expressing B. thetaiotaomicron strains, we ask whether CPSs can modify the immune responses to specific bacterial Ags. Acapsular B. thetaiotaomicron, which lacks all B. thetaiotaomicron CPSs, stimulated BθOM T cells more strongly than wild-type B. thetaiotaomicron Despite similar levels of BθOM Ag expression, many single CPS-expressing B. thetaiotaomicron strains were antistimulatory and weakly activated BθOM T cells, but a few strains were prostimulatory and strongly activated BθOM T cells just as well or better than an acapsular strain. B. thetaiotaomicron strains that expressed an antistimulatory CPS blocked Ag delivery to the immune system, which could be rescued by Fc receptor-dependent Ab opsonization. All single CPS-expressing B. thetaiotaomicron strains stimulated the innate immune system to skew toward M1 macrophages and release inflammatory cytokines in an MyD88-dependent manner, with antistimulatory CPS activating the innate immune system in a weaker manner than prostimulatory CPS. The expression of antistimulatory versus prostimulatory CPSs on outer membrane vesicles also regulated immune responses. Moreover, antistimulatory and prostimulatory single CPS-expressing B. thetaiotaomicron strains regulated the activation of Ag-specific and polyclonal T cells as well as clearance of dominant Ag in vivo. These studies establish that the immune responses to specific bacterial Ags can be modulated by a diverse set of CPSs.


Subject(s)
Antigens, Bacterial/immunology , Bacteroides thetaiotaomicron/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Polysaccharides, Bacterial/metabolism , Animals , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroides thetaiotaomicron/cytology , Bacteroides thetaiotaomicron/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Homeodomain Proteins/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Mucosal , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Lymphocyte Activation , Mice , Mice, Knockout , Polysaccharides, Bacterial/immunology , Symbiosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...