Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.346
Filter
1.
Sci Rep ; 14(1): 12827, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834834

ABSTRACT

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lipopolysaccharides , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , NF-kappa B/metabolism , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/microbiology , Mice , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/microbiology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Neoplasm Invasiveness , Inflammation/metabolism , Inflammation/pathology , Bacteroidetes , Gastrointestinal Microbiome , Cell Movement/drug effects , Male , Neoplasm Metastasis , Cell Proliferation , Female
2.
Open Biol ; 14(6): 230448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862016

ABSTRACT

Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 ß-sandwich (ß1-ß7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands ß3 and ß4 ('motif Lß3ß4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lß3ß4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Porphyromonas gingivalis , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/metabolism , Bacterial Secretion Systems/genetics , Bacterial Secretion Systems/chemistry , Models, Molecular , Crystallography, X-Ray , Amino Acid Sequence , Protein Sorting Signals , Protein Domains , Bacteroidetes/metabolism , Bacteroidetes/genetics , Tannerella forsythia/metabolism , Tannerella forsythia/genetics , Tannerella forsythia/chemistry , Structure-Activity Relationship , Protein Conformation
3.
Gut Microbes ; 16(1): 2350150, 2024.
Article in English | MEDLINE | ID: mdl-38841888

ABSTRACT

Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Metagenomics , Operon , Mice , Animals , Humans , Crohn Disease/microbiology , Crohn Disease/genetics , Bacteroidetes/genetics , Bacteroidetes/classification , Antigens, Bacterial/genetics , Genome, Bacterial , Enterobacteriaceae/genetics , Enterobacteriaceae/classification
4.
PeerJ ; 12: e17450, 2024.
Article in English | MEDLINE | ID: mdl-38860210

ABSTRACT

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Subject(s)
Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Spodoptera , Animals , Gastrointestinal Microbiome/genetics , Spodoptera/microbiology , Spodoptera/genetics , Larva/microbiology , RNA, Ribosomal, 16S/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Bacteria/genetics , Bacteria/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , Enterococcus/genetics , Bacteroides/genetics , Symbiosis
5.
Sci Rep ; 14(1): 10109, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698002

ABSTRACT

Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.


Subject(s)
Genome, Bacterial , Phylogeny , Humans , Gastrointestinal Microbiome/genetics , Gene Transfer, Horizontal , Evolution, Molecular , Genomics/methods , Bacteroidetes/genetics
6.
BMC Genomics ; 25(1): 495, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769483

ABSTRACT

Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, ß-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.


Subject(s)
Gene Expression Profiling , Polysaccharides , Rumen , Xylans , Animals , Xylans/metabolism , Polysaccharides/metabolism , Rumen/microbiology , Rumen/metabolism , Glucans/metabolism , beta-Glucans/metabolism , Substrate Specificity , Bacteroidetes/genetics , Bacteroidetes/metabolism , Transcriptome
7.
Sci Rep ; 14(1): 10137, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698108

ABSTRACT

Gut microbiota impact host physiology, though simultaneous investigations in ectothermic vertebrates are rare. Particularly, amphibians may exhibit more complex interactions between host physiology and the effects of gut microbiota due to the combination of seasonal changes and complex life histories. In this study, we assessed the relationships among food resources, gut bacterial communities, and host physiology in frogs (Phelophylax nigromaculatus), taking into account seasonal and life history variations. We found that food sources were not correlated with physiological parameters but had some relationships with the gut bacterial community. Variations in gut bacterial community and host physiology were influenced by the combined effects of seasonal differences and life history, though mostly driven by seasonal differences. An increase in Firmicutes was associated with higher fat content, reflecting potential fat storage in frogs during the non-breeding season. The increase in Bacteroidetes resulted in lower fat content in adult frogs and decreased immunity in juvenile frogs during the breeding season, demonstrating a direct link. Our results suggest that the gut microbiome may act as a link between food conditions and physiological status, and that the combined effect of seasons and life history could reinforce the relationship between gut microbiota and physiological status in ectothermic animals. While food sources may influence the gut microbiota of ectotherms, we contend that temperature-correlated seasonal variation, which predominately influences most ectotherms, is a significant factor.


Subject(s)
Anura , Gastrointestinal Microbiome , Seasons , Animals , Gastrointestinal Microbiome/physiology , Anura/physiology , Anura/microbiology , Bacteria , Bacteroidetes
8.
Sci Rep ; 14(1): 10237, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702505

ABSTRACT

Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.


Subject(s)
Cell Wall , Fucus , Metagenomics , Cell Wall/metabolism , Fucus/metabolism , Fucus/genetics , Fucus/microbiology , Metagenomics/methods , Bacteroidetes/genetics , Bacteroidetes/enzymology , Metagenome , Microbiota , Phylogeny
9.
Environ Microbiol ; 26(5): e16624, 2024 May.
Article in English | MEDLINE | ID: mdl-38757353

ABSTRACT

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Subject(s)
Bacterial Proteins , Glucans , Phytoplankton , Glucans/metabolism , Phytoplankton/metabolism , Phytoplankton/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteroidetes/metabolism , Bacteroidetes/genetics , Eutrophication , Diatoms/metabolism , Diatoms/genetics , Receptors, Cell Surface
10.
PLoS One ; 19(5): e0302522, 2024.
Article in English | MEDLINE | ID: mdl-38758940

ABSTRACT

Paddlefish has high economic and ecological value. In this study, microbial diversity and community structure in intestine, stomach, and mouth of paddlefish were detected using high-throughput sequencing. The results showed that the diversity and richness indices decreased along the digestive tract, and significantly lower proportion of those were observed in intestine. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla. In top 10 phyla, there was no significant difference in mouth and stomach. But compared with intestine, there were significant differences in 8 of the 10 phyla, and Firmicutes and Bacteroidetes increased significantly, while Proteobacteria decreased significantly. There was no dominant genus in mouth and stomach, but Clostridium_sensu_stricto_1 and uncultured_bacterium_o_Bacteroidales was predominant in intestine. In conclusion, the species and abundance of microbiota in the mouth and stomach of paddlefish were mostly the same, but significantly different from those in intestine. Moreover, there was enrichment of the dominant bacteria in intestine.


Subject(s)
Fishes , Gastrointestinal Microbiome , Animals , Fishes/microbiology , Gastrointestinal Tract/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Mouth/microbiology , Stomach/microbiology , Proteobacteria/isolation & purification , Proteobacteria/genetics , High-Throughput Nucleotide Sequencing , Intestines/microbiology , Bacteroidetes/isolation & purification , Bacteroidetes/genetics , Firmicutes/isolation & purification , Firmicutes/genetics , Firmicutes/classification , RNA, Ribosomal, 16S/genetics , Biodiversity
11.
Microbiol Spectr ; 12(6): e0024424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747631

ABSTRACT

Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.


Subject(s)
Metagenome , Microbiota , Antarctic Regions , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Multigene Family , Biofilms , Phylogeny , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/classification , Terpenes/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Bacteroidetes/classification
12.
Microbiol Spectr ; 12(6): e0401323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712938

ABSTRACT

Laccases (EC 1.10.3.2) are oxidoreductases that belong to the multicopper oxidase subfamily and are classified as yellow/white or blue according to their absorption spectrum. Yellow laccases are more useful for industrial processes since they oxidize nonphenolic compounds in the absence of a redox mediator and stand out for being more stable and functional under extreme conditions. This study aimed to characterize a new laccase that was predicted to be present in the genome of Chitinophaga sp. CB10 - Lac_CB10. Lac_CB10, with a molecular mass of 100.06 kDa, was purified and characterized via biochemical assays using guaiacol as a substrate. The enzyme demonstrated extremophilic characteristics, exhibiting relative activity under alkaline conditions (CAPS buffer pH 10.5) and thermophilic conditions (80-90°C), as well as maintaining its activity above 50% for 5 h at 80°C and 90°C. Furthermore, Lac_CB10 presented a spectral profile typical of yellow laccases, exhibiting only one absorbance peak at 300 nm (at the T2/T3 site) and no peak at 600 nm (at the T1 site). When lignin was degraded using copper as an inducer, 52.27% of the material was degraded within 32 h. These results highlight the potential of this enzyme, which is a novel yellow laccase with thermophilic and alkaline activity and the ability to act on lignin. This enzyme could be a valuable addition to the biorefinery process. In addition, this approach has high potential for industrial application and in the bioremediation of contaminated environments since these processes often occur at extreme temperatures and pH values. IMPORTANCE: The characterization of the novel yellow laccase, Lac_CB10, derived from Chitinophaga sp. CB10, represents a significant advancement with broad implications. This enzyme displays exceptional stability and functionality under extreme conditions, operating effectively under both alkaline (pH 10.5) and thermophilic (80-90°C) environments. Its capability to maintain considerable activity over extended periods, even at high temperatures, showcases its potential for various industrial applications. Moreover, its distinctive ability to efficiently degrade lignin-demonstrated by a significant 52.27% degradation within 32 h-signifies a promising avenue for biorefinery processes. This newfound laccase's characteristics position it as a crucial asset in the realm of bioremediation, particularly in scenarios involving contamination at extreme pH and temperature levels. The study's findings highlight the enzyme's capacity to address challenges in industrial processes and environmental cleanup, signifying its vital role in advancing biotechnological solutions.


Subject(s)
Enzyme Stability , Laccase , Lignin , Laccase/metabolism , Laccase/genetics , Laccase/isolation & purification , Laccase/chemistry , Lignin/metabolism , Hydrogen-Ion Concentration , Bacteroidetes/enzymology , Bacteroidetes/genetics , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Temperature , Biodegradation, Environmental , Guaiacol/metabolism , Copper/metabolism
13.
Microbiol Spectr ; 12(6): e0408423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717193

ABSTRACT

Researchers have extensively studied the effect of oxygen on the growth and survival of bacteria. However, the impact of oxygen on bacterial community structure, particularly its ability to select for taxa within the context of a complex microbial community, is still unclear. In a 21-day microcosm experiment, we investigated the effect of aerobic exposure on the fecal community structure and succession pattern in broiler, calf, and piglet feces (n = 10 for each feces type). Bacterial diversity decreased and community structure changed rapidly in the broiler microbiome (P < 0.001), while the fecal community of calves and piglets, which have higher initial diversity, was stable after initial exposure but decreased in diversity after 3 days (P < 0.001). The response to aerobic exposure was host animal specific, but in all three animals, the change in community structure was driven by a decrease in anaerobic species, primarily belonging to Firmicutes and Bacteroidetes (except in broilers where Bacteroidetes increased), along with an increase in aerobic species belonging to Proteobacteria and Actinobacteria. Using random forest regression, we identified microbial features that predict aerobic exposure. In all three animals, host-beneficial Prevotella-related ASVs decreased after exposure, while ASVs belonging to Acinetobacter, Corynbacterium, and Tissierella were increased. The decrease of Prevotella was rapid in broilers but delayed in calves and piglets. Knowing when these pathobionts increase in abundance after aerobic exposure could inform farm sanitation practices and could be important in designing animal experiments that modulate the microbiome.IMPORTANCEThe fecal microbial community is contained within a dynamic ecosystem of interacting microbes that varies in biotic and abiotic components across different animal species. Although oxygen affects bacterial growth, its specific impact on the structure of complex communities, such as those found in feces, and how these effects vary between different animal species are poorly understood. In this study, we demonstrate that the effect of aerobic exposure on the fecal microbiota was host-animal-specific, primarily driven by a decrease in Firmicutes and Bacteroidetes, but accompanied by an increase in Actinobacteria, Proteobacteria, and other pathobionts. Interestingly, we observed that more complex communities from pig and cattle exhibited initial resilience, while a less diverse community from broilers displayed a rapid response to aerobic exposure. Our findings offer insights that can inform farm sanitation practices, as well as experimental design, sample collection, and processing protocols for microbiome studies across various animal species.


Subject(s)
Bacteria , Chickens , Feces , Gastrointestinal Microbiome , Animals , Feces/microbiology , Chickens/microbiology , Swine/microbiology , Cattle/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Aerobiosis , RNA, Ribosomal, 16S/genetics , Bacteroidetes/genetics , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Microbiota
14.
Chemosphere ; 360: 142339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754488

ABSTRACT

The environmental burden due to industrial activities has been quite observable in the last few years, with heavy metals (HMs) like lead, cadmium, and arsenic inducing serious perturbations to the microbial ecosystem of groundwater. Studies carried out in North China, a region known for interconnection of industrial and groundwater systems, sought to explore the natural mechanisms of adaptation of microbes to groundwater contamination. The results showed that heavy metals permeate from surface increased the diversity and abundance of microbial communities in groundwater, producing an average decrease of 40.84% and 34.62% in the relative abundance of Bacteroidetes and Proteobacteria in groundwater, respectively. Meanwhile, the key environmental factors driving the evolution of microbial communities shift from groundwater nutrients to heavy metals, which explained 50.80% of the change in the microbial community composition. Microbial indicators are more sensitive to HMs pollution and could accurately identify industrial area where HMs permeation occurred and other extraneous pollutants. The phylum Bacteroidetes could act as appropriate indicators for the identification. Significant genera that were identified, being Mesorhizobium, Clostridium, Bacillus and Mucilaginibacter, were found to play important roles in the microbial network in terms of the potential to assist in groundwater clean-up. Notably, pollution from heavy metals has diminished the effectiveness and resilience of microbial communities in groundwater, thereby heightening the susceptibility of these normally stable microbial ecosystems. These findings offer new perspectives on how to monitor and detect groundwater pollution, and provide scientific guidance for developing suitable remediation methods for groundwater contaminated with heavy metals. Future research is essential explore the application of metal-tolerant or resistant bacteria in bioremediation strategies to rehabilitate groundwater systems contaminated by HMs.


Subject(s)
Environmental Monitoring , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Groundwater/microbiology , China , Environmental Monitoring/methods , Microbiota/drug effects , Bacteria/metabolism , Bacteria/drug effects , Bacteroidetes , Industry , Ecosystem
15.
Article in English | MEDLINE | ID: mdl-38739684

ABSTRACT

The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Anthozoa/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , China , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Phospholipids/analysis
16.
Sci Rep ; 14(1): 8283, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594374

ABSTRACT

Constipation is a widespread problem in paediatric practice, affecting almost 30% of children. One of the key causal factors of constipation may be disturbances in the homeostasis of the gastrointestinal microbiome. The aim of the study was to determine whether the oral and fecal microbiomes differ between children with and without constipation. A total of 91 children over three years of age were included in the study. Of these, 57 were qualified to a group with constipation, and 34 to a group without. The saliva and stool microbiomes were evaluated using 16S rRNA gene amplicon sequencing. Functional constipation was associated with characteristic bacterial taxa in the fecal microbiota. Statistically significant differences were found at the family level: Burkholderiaceae (q = 0.047), Christensenellaceae (q = 0.047), Chlostridiaceae (q = 0.047) were significantly less abundant in the constipation group, while the Tannerellaceae (q = 0.007) were more abundant. At the genus level, the significant differences were observed for rare genera, including Christensenellaceae r-7 (q = 2.88 × 10-2), Fusicatenibacter (q = 2.88 × 10-2), Parabacteroides (q = 1.63 × 10-2), Romboutsia (q = 3.19 × 10-2) and Subdoligranulum (q = 1.17 × 10-2). All of them were less abundant in children with constipation. With the exception of significant taxonomic changes affecting only feces, no differences were found in the alpha and beta diversity of feces and saliva. Children with functional constipation demonstrated significant differences in the abundance of specific bacteria in the stool microbiome compared to healthy children. It is possible that the rare genera identified in our study which were less abundant in the constipated patients (Christensellaceae r-7, Fusicatenibacter, Parabacteroides, Romboutsia and Subdoligranulum) may play a role in protection against constipation. No significant differences were observed between the two groups with regard to the saliva microbiome.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Microbiota , Humans , Child , RNA, Ribosomal, 16S/genetics , Constipation , Microbiota/genetics , Feces/microbiology , Mouth , Bacteria/genetics , Lactobacillales/genetics , Bacteroidetes/genetics
17.
PLoS One ; 19(4): e0301110, 2024.
Article in English | MEDLINE | ID: mdl-38568936

ABSTRACT

The present study was undertaken to profile and compare the cecal microbial communities in conventionally (CONV) grown and raised without antibiotics (RWA) broiler chickens. Three hundred chickens were collected from five CONV and five RWA chicken farms on days 10, 24, and 35 of age. Microbial genomic DNA was extracted from cecal contents, and the V4-V5 hypervariable regions of the 16S rRNA gene were amplified and sequenced. Analysis of 16S rRNA sequence data indicated significant differences in the cecal microbial diversity and composition between CONV and RWA chickens on days 10, 24, and 35 days of age. On days 10 and 24, CONV chickens had higher richness and diversity of the cecal microbiome relative to RWA chickens. However, on day 35, this pattern reversed such that RWA chickens had higher richness and diversity of the cecal microbiome than the CONV groups. On days 10 and 24, the microbiomes of both CONV and RWA chickens were dominated by members of the phylum Firmicutes. On day 35, while Firmicutes remained dominant in the RWA chickens, the microbiome of CONV chickens exhibited am abundance of Bacteroidetes. The cecal microbiome of CONV chickens was enriched with the genus Faecalibacterium, Pseudoflavonifractor, unclassified Clostridium_IV, Bacteroides, Alistipes, and Butyricimonas, whereas the cecal microbiome of RWA chickens was enriched with genus Anaerofilum, Butyricicoccu, Clostridium_XlVb and unclassified Lachnospiraceae. Overall, the cecal microbiome richness, diversity, and composition were greatly influenced by the management program applied in these farms. These findings provide a foundation for further research on tailoring feed formulation or developing a consortium to modify the gut microbiome composition of RWA chickens.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Gastrointestinal Microbiome/genetics , Chickens/microbiology , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Cecum/microbiology , Firmicutes/genetics , Bacteroidetes/genetics
18.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648368

ABSTRACT

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Subject(s)
Analgesics, Opioid , Dysbiosis , Fentanyl , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Morphine , Animals , Morphine/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Brain-Gut Axis/drug effects , Fecal Microbiota Transplantation , Pancreatitis-Associated Proteins/metabolism , Akkermansia/drug effects , Antimicrobial Peptides/pharmacology , Bacteroidetes/drug effects
19.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38573825

ABSTRACT

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Subject(s)
Groundwater , Iron , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S , Thiosulfates , Groundwater/microbiology , Thiosulfates/metabolism , Iron/metabolism , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , France , Genome, Bacterial , Sequence Analysis, DNA , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Bacteroidetes/metabolism
20.
Environ Monit Assess ; 196(5): 445, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607460

ABSTRACT

Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content ( NO 2 - - N , NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.


Subject(s)
Diatoms , Microbiota , Oligochaeta , Periphyton , Animals , Environmental Monitoring , Aquaculture , Bacteroidetes
SELECTION OF CITATIONS
SEARCH DETAIL
...