Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 432(24): 166693, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33122003

ABSTRACT

Many Gram-negative bacterial pathogens use type III secretion systems (T3SS) to inject proteins into eukaryotic cells to subvert normal cellular functions. The T3SS apparatus (injectisome) shares a common architecture in all systems studied thus far, comprising three major components - the cytoplasmic sorting platform, envelope-spanning basal body and external needle with tip complex. The sorting platform consists of an ATPase (SctN) connected to "pods" (SctQ) having six-fold symmetry via radial spokes (SctL). These pods interface with the 24-fold symmetric SctD inner membrane ring (IR) via an adaptor protein (SctK). Here we report the first high-resolution structure of a SctK protein family member, PscK from Pseudomonas aeruginosa, as well as the structure of its interacting partner, the cytoplasmic domain of PscD (SctD). The cytoplasmic domain of PscD forms a forkhead-associated (FHA) fold, like that of its homologues from other T3SS. PscK, on the other hand, forms a helix-rich structure that does not resemble any known protein fold. Based on these structural findings, we present the first model for an interaction between proteins from the sorting platform and the IR. We also test the importance of the PscD residues predicted to mediate this electrostatic interaction using a two-hybrid analysis. The functional need for these residues in vivo was then confirmed by monitoring secretion of the effector ExoU. These structures will contribute to the development of atomic-resolution models of the entire sorting platform and to our understanding of the mechanistic interface between the sorting platform and the basal body of the injectisome.


Subject(s)
Adenosine Triphosphatases/ultrastructure , Bacterial Proteins/ultrastructure , Pseudomonas aeruginosa/ultrastructure , Type III Secretion Systems/ultrastructure , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Basal Bodies/enzymology , Basal Bodies/ultrastructure , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/ultrastructure , Cytosol/ultrastructure , Protein Transport/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Type III Secretion Systems/chemistry , Type III Secretion Systems/genetics
2.
Parasit Vectors ; 10(1): 443, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28950916

ABSTRACT

BACKGROUND: γ-Carboxymuconolactone decarboxylase (CMD) participates in the ß-ketoadipate pathway, which catalyzes aromatic compounds to produce acetyl- or succinyl-CoA, in prokaryotes and yeast. Our previous study demonstrated that expression of a CMD homologue that contains two signatures (dualCMD) is negatively regulated by iron in Trichomonas vaginalis. However, we were not able to identify the components of the ß-ketoadipate pathway in the parasite's genome. These observations prompted us to investigate the biological functions of this novel CMD homologue in T. vaginalis. METHODS: The specific anti-TvCMD1 antibody was generated, and the expression of TvCMD1 in T. vaginalis cultured under iron-rich and iron-deficient were evaluated. Phylogenetic, metabolomic and substrate induction (protocatechuate and benzoate) analysis were conducted to clarify the function of dualCMD in trichomonad cells. Subcellular localization of TvCMD1 was observed by confocal microscopy. The cell cycle-related role of TvCMD1 was assessed by treating cells with G2/M inhibitor nocodazole. RESULTS: We confirmed that T. vaginalis is not able to catabolize the aromatic compounds benzoate and protocatechuate, which are known substrates of the ß-ketoadipate pathway. Using immunofluorescence microscopy, we found that TvCMD1 is spatially associated with the basal body, a part of the cytoskeletal organizing center in T. vaginalis. TvCMD1 accumulated upon treatment with the G2/M inhibitor nocodazole. Additionally, TvCMD1 was expressed and transported to/from the basal body during cytokinesis, suggesting that TvCMD1 plays a role in cell division. CONCLUSION: We demonstrated that TvCMD1 is unlikely to participate in the ß-ketoadipate pathway and demonstrated that it is a novel basal body-localizing (associated) protein. This model sheds light on the importance of genes that are acquired laterally in the coevolution of ancient protists, which surprisingly functions in cell cycle regulation of T. vaginalis.


Subject(s)
Basal Bodies/enzymology , Carboxy-Lyases/metabolism , Cell Cycle , Protozoan Proteins/metabolism , Trichomonas vaginalis/enzymology , Benzoates/metabolism , Carboxy-Lyases/genetics , Iron/metabolism , Protozoan Proteins/genetics , Trichomonas vaginalis/cytology , Trichomonas vaginalis/genetics
3.
J Biol Chem ; 292(2): 488-504, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27895123

ABSTRACT

We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets and form complexes named ciliary adhesions (CAs). CAs display similarities with FAs but are established in an integrin independent fashion and are responsible for anchoring basal bodies to the actin cytoskeleton during ciliogenesis as well as in mature multiciliated cells. FAK down-regulation leads to aberrant ciliogenesis due to impaired association between the basal bodies and the actin cytoskeleton, suggesting that FAK is an important regulator of the CA complex. However, the mechanism through which FAK functions in the complex is not clear, and in this study we examined the role of this protein in both ciliogenesis and ciliary function. We show that localization of FAK at CAs depends on interactions taking place at the amino-terminal (FERM) and carboxyl-terminal (FAT) domains and that both domains are required for proper ciliogenesis and ciliary function. Furthermore, we show that an interaction with another CA protein, paxillin, is essential for correct localization of FAK in multiciliated cells. This interaction is indispensable for both ciliogenesis and ciliary function. Finally, we provide evidence that despite the fact that FAK is in the active, open conformation at CAs, its kinase activity is dispensable for ciliogenesis and ciliary function revealing that FAK plays a scaffolding role in multiciliated cells. Overall these data show that the role of FAK at CAs displays similarities but also important differences compared with its role at FAs.


Subject(s)
Avian Proteins/metabolism , Basal Bodies/enzymology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Actin Cytoskeleton/enzymology , Actin Cytoskeleton/genetics , Animals , Avian Proteins/genetics , Chickens , Cilia/enzymology , Cilia/genetics , Focal Adhesion Protein-Tyrosine Kinases/genetics , Paxillin/genetics , Paxillin/metabolism , Protein Domains , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...