Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.733
Filter
1.
Carbohydr Polym ; 339: 122214, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823900

ABSTRACT

The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-ß-D-Glcp-(1→, →3)-ß-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-ß-D-Glcp-(1→ by ß-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.


Subject(s)
Basidiomycota , Cell Differentiation , Glucans , Animals , Mice , Basidiomycota/chemistry , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Cell Differentiation/drug effects , T-Lymphocytes/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Male , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Cyclophosphamide/pharmacology , Mice, Inbred BALB C , Gastrointestinal Microbiome/drug effects
2.
Int J Med Mushrooms ; 26(5): 59-71, 2024.
Article in English | MEDLINE | ID: mdl-38780423

ABSTRACT

To fully utilize Phellinus igniarius fermentation mycelia, the present study investigated the in vitro antioxidant and α-amylase inhibitory properties of four Ph. igniarius strains. Organic solvents were used to extract fatty acids, phenolics, and flavonoids from the selected mushrooms. The composition and bioactivity of the extracts were evaluated. The lipid yield obtained using petroleum ether (7.1%) was higher than that obtained using 1:1 n-hex-ane+methanol (5.5%) or 2:1 dichloromethane+methanol (3.3%). The composition and relative content of saturated and unsaturated fatty acids in the petroleum ether extract were higher than those in other solvent extracts. Furthermore, ethyl acetate extracts had higher flavonoid and phenolic content and better antioxidant activity than other extracts; however, the 70% ethanol extracts had the best α-amylase inhibitory activity. The supernatant from the ethanol precipitation of aqueous and 1% (NH4)2C2O4 extracts could also be biocompound sources. This comparative study is the first highlighting the in vitro antioxidant and α-amylase inhibitory properties of the four strains of Ph. igniarius extracts prepared using different organic solvents, which makes the investigated species and extracts promising for biological application.


Subject(s)
Antioxidants , Flavonoids , Mycelium , Phenols , alpha-Amylases , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Amylases/antagonists & inhibitors , Mycelium/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Phenols/pharmacology , Phenols/chemistry , Phenols/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Solvents/chemistry , Basidiomycota/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fermentation
3.
Adv Clin Exp Med ; 33(5): 533-542, 2024 May.
Article in English | MEDLINE | ID: mdl-38775333

ABSTRACT

BACKGROUND: Circulating cancer cells have characteristics of tumor self-targeting. Modified circulating tumor cells may serve as tumor-targeted cellular drugs. Tremella fuciformis-derived polysaccharide (TFP) is related to immune regulation and tumor inhibition, so could B16 cells reeducated by TFP be an effective anti-tumor drug? OBJECTIVES: To evaluate the intrinsic therapeutic potential of B16 cells exposed to TFP and clarify the therapeutic molecules or pathways altered by this process. MATERIAL AND METHODS: RNA-seq technology was used to study the effect of TFP-reeducated B16 cells on the immune and inflammatory system by placing the allograft subcutaneously in C57BL/6 mice. RESULTS: Tremella fuciformis-derived polysaccharide-reeducated B16 cells recruited leukocytes, neutrophils, dendritic cells (DCs), and mast cells into the subcutaneous region and promoted the infiltration of several cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and interleukin 1 (IL-1). Tumor necrosis factor alpha also activated Th17 lymphocytes to secrete interleukin 17 (IL-17) and interferon gamma (IFN-γ). The co-expression of IFN-γ and IL-17 was favorable for tumor immunity to shrink tumors. In short, TFP-reeducated B16 cells activated the innate and adaptive immune responses, especially Th17 cell differentiation and IFN-γ production, as well as the TNF-α signaling pathway, which re-regulated the inflammatory and immune systems. CONCLUSION: B16 cells subcutaneously exposed to TFP in mice induced an immune and inflammatory response to inhibit tumors. The study of the function of TFP-reeducated B16 cells to improve cancer immunotherapy may be of particular research interest. This approach could be an alternative and more efficient strategy to deliver cytokines and open up new possibilities for long-lasting, multi-level tumor control.


Subject(s)
Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Mice , Gene Expression Profiling/methods , Cytokines/metabolism , Basidiomycota/chemistry , Cell Line, Tumor , Polysaccharides/pharmacology , Fungal Polysaccharides/pharmacology , Inflammation/immunology
4.
Int J Biol Macromol ; 270(Pt 2): 132029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704064

ABSTRACT

Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.


Subject(s)
Apoptosis , Copper , Osteosarcoma , Tumor Microenvironment , Animals , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Mice , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Basidiomycota/chemistry , RAW 264.7 Cells , Gels/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
5.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
6.
Nanoscale ; 16(16): 8046-8059, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38563130

ABSTRACT

The biomedical application of nanotechnology in cancer treatment has demonstrated significant potential for improving treatment efficiencies and ameliorating adverse effects. However, the medical translation of nanotechnology-based nanomedicines faces challenges including hazardous environmental effects, difficulties in large-scale production, and possible excessive costs. In the present study, we extracted and purified natural exosome-like nanoparticles (ELNs) from Phellinus linteus. These nanoparticles (denoted as P-ELNs) had an average particle size of 154.1 nm, displayed a negative zeta potential of -31.3 mV, and maintained stability in the gastrointestinal tract. Furthermore, P-ELNs were found to contain a diverse array of functional components, including lipids and pharmacologically active small-molecule constituents. In vitro investigations suggested that they exhibited high internalization efficiency in liver tumor cells (Hepa 1-6) and exerted significant anti-proliferative, anti-migratory, and anti-invasive effects against Hepa 1-6 cells. Strikingly, the therapeutic outcomes of oral P-ELNs were confirmed in an animal model of metastatic hepatocellular carcinoma by amplifying reactive oxygen species (ROS) and rebalancing the gut microbiome. These findings demonstrate the potential of P-ELNs as a promising oral therapeutic platform for liver cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Gastrointestinal Microbiome , Liver Neoplasms , Reactive Oxygen Species , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Reactive Oxygen Species/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Mice , Cell Line, Tumor , Exosomes/metabolism , Exosomes/chemistry , Gastrointestinal Microbiome/drug effects , Basidiomycota/chemistry , Basidiomycota/metabolism , Nanoparticles/chemistry , Phellinus/chemistry , Cell Proliferation/drug effects , Cell Movement/drug effects , Administration, Oral
7.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657235

ABSTRACT

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Subject(s)
Bacillus , Basidiomycota , Coptis , Plant Diseases , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Bacillus/chemistry , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Basidiomycota/chemistry , Basidiomycota/metabolism , Coptis/chemistry , Coptis/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Gas Chromatography-Mass Spectrometry , Mycelium/chemistry , Mycelium/growth & development , Mycelium/drug effects
8.
Phytochemistry ; 223: 114112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685395

ABSTRACT

Phellintremulin A (1), a rearranged sesquiterpenoid with an unprecedented bicyclic backbone, and two previously unreported illudane-type sesquiterpenoids, namely phellintremulin B (2) and phellintremulin C (3), together with two known analogues (±)‒4 and (±)‒5, were isolated from cultures of the medicinal fungus Phellinus tremulae. Their structures and absolute configurations were established by means of spectroscopic data and HRESIMS analyses, as well as ECD and NMR calculations. A plausible biogenesis for 1 was discussed. The electrophysiological experiments showed that phellintremulins (A‒C) can inhibit Nav current in DRG neuron cells at 10 µM, with percentage inhibitions of 23.2%, 49.3%, and 31.7%, respectively. The antinociceptive activities of phellintremulins (A‒C) were evaluated via the acetic acid-induced writhing test in mice at a dose of 3 mg/kg. They showed significant antinociceptive effects with percentages of inhibition of 43.8%, 54.4%, and 50.6%, respectively, and phellintremulin B and C expressed more potent analgesic effect than lidocaine.


Subject(s)
Analgesics , Basidiomycota , Sesquiterpenes , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Mice , Basidiomycota/chemistry , Molecular Structure , Male , Dose-Response Relationship, Drug , Structure-Activity Relationship
9.
Int J Biol Macromol ; 266(Pt 1): 131232, 2024 May.
Article in English | MEDLINE | ID: mdl-38554896

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions characterized by disruptions in the colonic mucus barrier and gut microbiota. In this study, a novel soluble polysaccharide obtained from Boletus aereus (BAP) through water extraction was examined for its structure. The protective effects of BAP on colitis were investigated using a DSS-induced mice model. BAP was found to promote the expression of intestinal mucosal and tight junction proteins, restore the compromised mucus barrier, and suppress the activation of inflammatory signaling. Moreover, BAP reshape the gut microbiota and had a positive impact on the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, BAP decreased cytokine levels through the MANF-BATF2 signaling pathway. Correlation analysis revealed that MANF was negatively correlated with the DAI and the level of cytokines. Furthermore, the depletion of gut microbiota using antibiotic partially inhabited the effect of BAP on the activation of MANF and Muc2, indicating the role of gut microbiota in its protective effect against colitis. In conclusion, BAP had an obvious activation on MANF under gut inflammation. This provides new insights into the prospective use of BAP as a functional food to enhance intestinal health.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Mucin-2 , Signal Transduction , Animals , Gastrointestinal Microbiome/drug effects , Mucin-2/metabolism , Mucin-2/genetics , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Disease Models, Animal , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cytokines/metabolism , Basidiomycota/chemistry , Male , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
10.
Mycologia ; 116(3): 464-474, 2024.
Article in English | MEDLINE | ID: mdl-38489159

ABSTRACT

Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.


Subject(s)
Antioxidants , Ergocalciferols , Polyphenols , Ergocalciferols/metabolism , Ergocalciferols/analysis , Polyphenols/metabolism , Polyphenols/analysis , Antioxidants/metabolism , Antioxidants/analysis , Chromatography, Liquid , Basidiomycota/metabolism , Basidiomycota/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Agaricales/chemistry , Agaricales/metabolism , Mass Spectrometry , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
11.
Int J Biol Macromol ; 265(Pt 2): 131116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522704

ABSTRACT

Dictyophora indusiata is medicinal and edible fungi containing various nutrients. The aim of this study was to investigate the efficient extraction and structural evolution of Dictyophora indusiata polysaccharide during the vitro digestion based on steam explosion pretreatment methods. In this study, the extraction rate of Dictyophora indusiata polysaccharide was optimized by steam explosion pretreatment methods, which was 2.46 folds that of the water extraction method. In addition, the digestion and fermentation properties of Dictyophora indusiata polysaccharide before and after steam explosion were evaluated in vitro by the changes of molecular weights, total and reducing sugars levels, surface morphology and functional groups, which showed that the structure of Dictyophora indusiata polysaccharide remained stable after salivary-gastric digestion, and partially entered the large intestine, where it could be utilized by gut microbiota. Dictyophora indusiata polysaccharide promoted the increase of beneficial bacteria Megamonas and increased the content of acetic acid, propionic acid and butyric acid, which was 2.17, 2.81, 2.43 folds that of the CON group after fermentation for 24 h, and 1.87, 2.77, 1.90 folds that of the CON group after fermentation for 48 h, respectively. This study will provide theoretical basis for the high value utilization of Dictyophora indusiata polysaccharide.


Subject(s)
Basidiomycota , Steam , Basidiomycota/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Water
12.
Nutrients ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542742

ABSTRACT

Nutraceuticals represent an emerging and dynamic scientific field due to their important potential in integrated healthcare through nutritional and medicinal approaches that interact and complement each other mutually. In an attempt to find new sources for such preparations, the present research focuses on the species Craterellus cornucopioides (L.) Pers. (Cantharellaceae), also known as the black trumpet. This wild mushroom species is renowned for its culinary excellence and unique taste and is used especially in a dehydrated state. However, beyond its gastronomic value, recent scientific investigations have revealed its potential as a source of bioactive compounds with pharmaceutical and therapeutic significance. Our study aimed, therefore, to review the current data regarding the morphology, chemical profile, and medicinal potential of the black trumpet mushroom, highlighting its unique attributes. By conducting a comprehensive literature analysis, this paper contributes to the broader understanding of this remarkable fungal species as a potential functional food and its promising applications in the field of therapeutics.


Subject(s)
Agaricales , Basidiomycota , Basidiomycota/chemistry , Agaricales/chemistry , Dietary Supplements
13.
Molecules ; 29(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542832

ABSTRACT

The species in Sanghuangporus are a group of edible mushrooms with a long history of oral use in East Asia as a health-improvement method. They should be classified under the genus Sanghuangporus rather than mistakenly in Phellinus or Inonotus. The major components in this genus consist of polysaccharides, polyphenols, triterpenoids, and flavonoids, all of which exist in the fruiting bodies and mycelia. For extraction, studies have shown methods using hot water, ethanol, DES solvent, and alkaline, followed by purification methods including traditional anion column, Sevag solution, macroporous resin, and magnetic polymers. Proven by modern medical technology, these components possess promising anti-inflammatory, antioxidative, antitumor, and immunoregulation effects; additionally, they have health-improving effects including pulmonary protection, hypoglycemic properties, sleep improvement, gout mitigation, antiaging, neuroprotection, and muscle-strengthening abilities. Several toxicity studies have revealed their safety and recommend a dose of 1 g/kg for mice. As a newly emerged concept, functional food can provide not only life-sustaining nutrients but also some health-improving effects. In conclusion, we substantiate Sanghuang as a functional food by comprehensively presenting information on extraction and purification methods, component medical and structural properties, and nontoxicity, hoping to benefit the development of Sanghuang species as a group of functional food.


Subject(s)
Agaricales , Basidiomycota , Animals , Mice , Basidiomycota/chemistry , Agaricales/chemistry , Antioxidants/pharmacology , Phellinus , Polyphenols
14.
Pest Manag Sci ; 80(7): 3182-3193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38358013

ABSTRACT

BACKGROUND: Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS: Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION: Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.


Subject(s)
Amino Acids , Drug Design , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Amino Acids/chemistry , Amino Acids/pharmacology , Arachis/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Benzofurans/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Basidiomycota/drug effects , Basidiomycota/chemistry , Ascomycota/drug effects
15.
Int J Biol Macromol ; 260(Pt 1): 129347, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224808

ABSTRACT

Herein, the low-molecular-weight heteropolysaccharide (designated as TABP), with a weight-average Mw of 5408 Da, was produced by the endophytic bacterium Bacillus sp. TAB, which was initially isolated from the fruiting bodies of the wild Tremella aurantialba. A relatively high TABP accumulation was obtained and enhanced to 6.94 g/L in 5 L fed-batch fermentation by high-density cultivation. Monosaccharide composition analysis showed that the TABP comprised arabinose, glucosamine, galactose, glucose, and mannose with a molar ratio of 0.073: 0.145: 0.406: 0.182: 0.195, respectively. Methylation and NMR analyses indicated that TABP contained 1,4-linked ß-d-Galp and 1,4-linked ß-d-Manp pyranosyl backbone, extensively substituted at the side chains to form a complex structure. Prebiotic potential analysis exhibited significant growth-promoting effects for various lactic acid bacteria by more than 90 %. Overall, this study initially provides valuable insights into the endophytic exopolysaccharides from T. aurantialba and their biological activity, which provides prospective sources of prebiotics for functional foods and aids in understanding the endophytes symbiosis mechanism in edible mushrooms.


Subject(s)
Basidiomycota , Polysaccharides , Prospective Studies , Polysaccharides/pharmacology , Polysaccharides/chemistry , Basidiomycota/chemistry , Bacteria
16.
Nat Prod Res ; 38(10): 1748-1752, 2024 May.
Article in English | MEDLINE | ID: mdl-37328932

ABSTRACT

Phellinus igniarius (PI) has various kinds of biological activities, such as antitumour activities, and polysaccharides are one of its main components. In this study, polysaccharides from PI (PIP) were prepared, purified, analysed for their structure and investigated for their antitumour activity and mechanism in vitro. PIP consists of 12138 kDa of carbohydrates containing 90.5 ± 1.6% neutral carbohydrates. PIP consists of glucose, galactose, mannose, xylose, D-fructose, L-guluronic acid, glucosamine hydrochloride, rhamnose, arabinose and D-mannoturonic acid. PIP can significantly inhibit HepG2 cell proliferation, induce cell apoptosis and also inhibited migration and invasion in a concentration-dependent manner. PIP increased reactive oxygen species (ROS), increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. PIP is a promising potential candidate for the therapeutic treatment of hepatic carcinoma via the ROS-mediated mitochondrial apoptosis pathway.


Subject(s)
Basidiomycota , Carcinoma , Phellinus , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53 , Basidiomycota/chemistry , Polysaccharides/chemistry , Apoptosis
17.
Int J Biol Macromol ; 258(Pt 1): 128702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072341

ABSTRACT

Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application. Various processing strategies have been employed to modify them for improving the functional properties and yield. Herein, we compare the primary modes of extraction and purification employed to improve the yield and purity, review the structure-activity relationships, and discuss the application of P. linteus polysaccharides using nano-carriers for the encapsulation and delivery of various drugs to improve bioactivity. The limitations and future perspectives are also discussed. Exploring the bioactivity, structure-activity relationship, processing methods, and delivery routes of P. linteus polysaccharides will facilitate the development of functional foods and dietary supplements rich in P. linteus polysaccharides.


Subject(s)
Basidiomycota , Basidiomycota/chemistry , Polysaccharides/chemistry , Structure-Activity Relationship , Drug Delivery Systems
18.
Int J Med Mushrooms ; 25(12): 43-53, 2023.
Article in English | MEDLINE | ID: mdl-37947063

ABSTRACT

Chemical investigation of the polypore fungus Fistulina hepatica resulted in the isolation of five compounds, including four new polyacetylenic fatty acid derivatives - isocinnatriacetin B (1), isocinnatriacetin A (2), cinna-triacetin C (3) and ethylcinnatriacetin A (4) together with one known polyacetylene fatty acid derivative - cinnatriacetin A (5). The structures were elucidated using spectroscopic methods (UV, NMR, HR-ESIMS) along with comparison to literature data. Antibacterial activity screening of compounds 1-5 against ESKAPE bacterial strains in vitro with zones of inhibition (ZOI) was performed and MIC values were established for the most active compounds (3 and 4). Together with that morphological and growth parameters under solid-phase cultivation were also researched.


Subject(s)
Agaricales , Basidiomycota , Polyacetylene Polymer/pharmacology , Basidiomycota/chemistry , Anti-Bacterial Agents , Polyynes/pharmacology , Fatty Acids , Molecular Structure
19.
Int J Med Mushrooms ; 25(12): 55-64, 2023.
Article in English | MEDLINE | ID: mdl-37947064

ABSTRACT

This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.


Subject(s)
Agaricales , Basidiomycota , Salix , Agaricales/chemistry , Flavonoids/analysis , Fermentation , Basidiomycota/chemistry , Mycelium/chemistry
20.
J Nat Prod ; 86(11): 2580-2584, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37931226

ABSTRACT

Metabolites 1 and 2, isolated from cultures of the basidiomycete Resupinatus sp. BCC84615, collected in a tropical forest in northeastern Thailand, showed weak antibiotic activity against Bacillus subtilis and Staphylococcus aureus and cytotoxicity against cancer cell lines. Their planar structures were elucidated by high-resolution electrospray ionization mass spectrometry and NMR spectroscopy as clavilactone J, known from the basidiomycete Ampulloclitocybe clavipes, and its new 1,4-benzoquinone derivative. A detailed analysis of the ROESY correlations in 1 confirmed the recent revision of the relative configuration of clavilactone J. However, specific rotation and Cotton effects observed by electronic circular dichroism were contrary to those of the clavilactones; thus, we assigned a rare antipodal absolute configuration.


Subject(s)
Basidiomycota , Basidiomycota/chemistry , Magnetic Resonance Spectroscopy , Anti-Bacterial Agents/chemistry , Benzoquinones/pharmacology , Quinones , Molecular Structure , Circular Dichroism
SELECTION OF CITATIONS
SEARCH DETAIL
...