Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.314
Filter
1.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738810

ABSTRACT

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Subject(s)
Asclepias , Fungi , Herbivory , Plant Leaves , Animals , Plant Leaves/microbiology , Asclepias/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/physiology , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Mycobiome , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/physiology , Basidiomycota/isolation & purification , Gastrointestinal Microbiome , Larva/microbiology , Moths/microbiology
2.
Article in English | MEDLINE | ID: mdl-38780584

ABSTRACT

Four yeast strains belonging to the basidiomycetous yeast genus Mrakia were isolated from diverse habitats in the Ny-Ålesund region (Svalbard, High Arctic): two from vascular plants, one from seawater and one from freshwater. Phylogenetic analysis, based on the ITS region and the D1/D2 domain of the 28S rRNA gene, identified these four strains as representing two novel species within the genus Mrakia. The names Mrakia polaris sp. nov. (MycoBank number: MB 852063) and Mrakia amundsenii sp. nov. (MycoBank number: MB 852064) are proposed. These two new species show distinct psychrophilic adaptations, as they exhibit optimal growth at temperatures between 10 and 15°C, while being unable to grow at 25°C. The holotype of M. polaris sp. nov. is CPCC 300345T, and the holotype of M. amundsenii sp. nov. is CPCC 300572T.


Subject(s)
DNA, Fungal , Phylogeny , Seawater , Sequence Analysis, DNA , Arctic Regions , DNA, Fungal/genetics , Seawater/microbiology , Mycological Typing Techniques , Svalbard , RNA, Ribosomal, 28S/genetics , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , Fresh Water/microbiology , Ecosystem , Cold Temperature , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification
3.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719921

ABSTRACT

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Subject(s)
Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
4.
Int J Med Mushrooms ; 26(5): 43-57, 2024.
Article in English | MEDLINE | ID: mdl-38780422

ABSTRACT

Wild resources of Auricularia cornea (A. polytricha) are abundant in China, and genetic diversity and genetic relationships analysis of A. cornea can provide basis for germplasm resource utilization and innovation and molecular marker-assisted breeding. In this study, 22 Auricularia strains collected were identified as A. cornea based on ITS sequence analysis, and its genetic diversity was examined by ISSR and SRAP markers. The results showed that a total of 415 bands were amplified by 11 selected ISSR primers, with an average amplification of 37.73 bands per primer, and the mean values of Ne, I, and H were 1.302, 0.368, and 0.219, respectively. A total of 450 bands were amplified by 10 SRAP primers, with an average of 45 bands per primer, and the average of Ne, I, and H were 1.263, 0.302, and 0.183, respectively. The unweighted pair-group method with arithmetic means analysis based on ISSR-SRAP marker data revealed that the genetic similarity coefficient between the tested strains was 0.73-0.97, and the strains could be divided into five groups at 0.742, which had a certain correlation with regional distribution. The results of PCOA and population structure analysis based on ISSR-SRAP data also produced similar results. These results demonstrate the genetic diversity and distinctness among wild A. cornea and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of A. cornea resources.


Subject(s)
Basidiomycota , Genetic Variation , China , Basidiomycota/genetics , Basidiomycota/classification , Genetic Markers , Phylogeny , DNA, Fungal/genetics , Microsatellite Repeats , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
5.
Sci Rep ; 14(1): 9298, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654032

ABSTRACT

Agaricales, Russulales and Boletales are dominant orders among the wild mushrooms in Basidiomycota. Boletaceae, one of the major functional elements in terrestrial ecosystem and mostly represented by ectomycorrhizal symbionts of trees in Indian Himalaya and adjoining hills, are extraordinarily diverse and represented by numerous genera and species which are unexplored or poorly known. Therefore, their hidden diversity is yet to be revealed. Extensive macrofungal exploration by the authors to different parts of Himalaya and surroundings, followed by through morphological studies and multigene molecular phylogeny lead to the discovery of five new species of wild mushrooms: Leccinellum bothii sp. nov., Phylloporus himalayanus sp. nov., Phylloporus smithii sp. nov., Porphyrellus uttarakhandae sp. nov., and Retiboletus pseudoater sp. nov. Present communication deals with morphological details coupled with illustrations and phylogenetic inferences. Besides, Leccinellum sinoaurantiacum and Xerocomus rugosellus are also reported for the first time from this country.


Subject(s)
Agaricales , Phylogeny , India , Agaricales/genetics , Agaricales/classification , DNA, Fungal/genetics , Basidiomycota/genetics , Basidiomycota/classification
6.
Mycologia ; 116(3): 418-430, 2024.
Article in English | MEDLINE | ID: mdl-38530332

ABSTRACT

In 1895 and 2001, rust fungi affecting Licania trees (Chrysobalanchaceae) in Brazil were described as Uredo licaniae by Hennings in the state of Goiás and as Phakopsora tomentosae by Ferreira et al. in the state of Amazonas, respectively. Recently, a Licania rust fungus collected close to the Amazonian type location sharing symptoms with the former two species was subjected to morphological examinations and molecular phylogenetic analyses using 28S nuc rDNA (ITS2-28S) and cytochrome c oxidase subunit III (CO3) gene sequences. Since the original type specimen of Ph. tomentosae is considered lost, we carefully reviewed the type description and questioned the identity of the telium, which justified the description of the fungus as a Phakopsora species. Furthermore, the additional revision of the type material described by Hennings revealed that Ph. tomentosae is a synonym of U. licaniae. Based on the morphological examinations, disease symptoms, and shared hosts, we concluded that the newly collected material is conspecific with U. licaniae. However, the phylogenetic analyses rejected allocation in Phakopsora and instead assigned the Licania rust fungus in a sister relationship with Austropuccinia psidii (Sphaerophragmiaceae), the causal agent of the globally invasive myrtle rust pathogen. We therefore favored a recombination of U. licaniae (syn. Ph. tomentosae) into Austropuccinia and proposed the new name Austropuccina licaniae for the second species now identified for this genus. The fungus shares conspicuous symptoms with A. psidii, causing often severe infections of growing leaves and shoots that lead to leaf necrosis, leaf shedding, and eventually to the dieback of entire shoots. In view of the very similar symptoms of its aggressively invasive sister species, we briefly discuss the current state of knowledge about A. licaniae and the potential risks, and the opportunity of its identification.


Subject(s)
Basidiomycota , DNA, Fungal , Phylogeny , Plant Diseases , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , Plant Diseases/microbiology , DNA, Fungal/genetics , Brazil , Sequence Analysis, DNA , RNA, Ribosomal, 28S/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Trees/microbiology
7.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37580133

ABSTRACT

Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY: A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.


Subject(s)
Xanthophylls , Directed Molecular Evolution , Gene Expression Profiling , Basidiomycota/chemistry , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/growth & development , Biomass , Glucose/analysis , Carotenoids/analysis , Fermentation , Batch Cell Culture Techniques , Nitrogen/metabolism , Xanthophylls/chemistry , Xanthophylls/metabolism
8.
Article in English | MEDLINE | ID: mdl-37022743

ABSTRACT

Four strains (NYNU 178247, NYNU 178251, DMKU-PAL160 and DMKU-PAL137) representing a novel yeast species were isolated from the external surfaces of rice and pineapple leaves collected in China and Thailand. Phylogenetic analysis based on the concatenated sequences of the internal transcribed spacer (ITS) regions and the D1/D2 domains of the large subunit rRNA gene revealed that the novel species belonged to the genus Spencerozyma. The D1/D2 sequence of the novel species differed from its closest relative, Spencerozyma acididurans SYSU-17T, by 3.2 % sequence divergence. The species also differed from Spencerozyma crocea CBS 2029T and Spencerozyma siamensis DMKU13-2T, by 3.0-6.9 % sequence divergence in the D1/D2 sequences out of 592 bp. In the ITS regions, the novel species displayed 19.8-29.2% sequence divergence from S. acididurans SYSU-17T, S. crocea CBS 2029T and S. siamensis DMKU13-2T out of 655 bp. Furthermore, the novel species could also be differentiated from the closely related species by some physiological characteristics. The species name of Spencerozyma pingqiaoensis sp. nov. (Holotype CBS 15238, Mycobank MB 844734) is proposed to accommodate these four strains.


Subject(s)
Ananas , Basidiomycota , Oryza , Phylogeny , Base Composition , China , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Oryza/microbiology , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Basidiomycota/classification , Basidiomycota/isolation & purification , Ananas/microbiology
9.
J Vet Med Sci ; 85(3): 271-278, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36653148

ABSTRACT

Koalas are iconic mammals indigenous to Australia. These rare animals and their habitats are occasionally associated with pathogenic fungi, including species of Cryptococcus, and consequently, monitoring the mycobiota of areas inhabited by koalas is of considerable importance. In this report, we describe a novel basidiomycetous yeast isolated from a site in Kanazawa Zoo, Japan, associated with captive koalas. Swab samples were collected from koala breeding environments, from which we isolated a novel unencapsulated yeast characterized by ovoid to ellipsoidal cells (3.2-4.9 × 3.5-5 µm). These cells were observed to undergo polar budding and grow as parent bud pairs, with an optimal growth temperature of 28°C. Colonies grown on yeast extract peptone dextrose agar at 28°C have a characteristic coral pink color. On the basis of physiological, morphological, and molecular characters, the new species was placed in the genus Begerowomyces, and the name Begerowomyces aurantius JCM33898T(LSEM1333T=CBS16241T) is proposed.


Subject(s)
Basidiomycota , Phascolarctidae , Phylogeny , Animals , Ecosystem , Phascolarctidae/microbiology , Basidiomycota/classification , Basidiomycota/isolation & purification , Animals, Zoo/microbiology
10.
Anal Chem ; 94(32): 11216-11223, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35920602

ABSTRACT

Lipase found in the gut microbiota participates in the digestion and absorption of dietary fats. As such, the gut microbiota is involved in the regulation of the host metabolism, affecting the levels of lipids and free fatty acids, ultimately resulting in obesity. In this study, an enzymatic activatable near-infrared fluorescent probe, DDAO-C6, was developed for visually sensing endogenous lipase from gut microbes. Using DDAO-C6, a cultivated intestinal yeast strain was rapidly identified from human feces that exhibited high lipase expression and was identified as Trichosporon asahii Y2. We then determined that the colonization of the gut of mice with T. asahii Y2 increased lipase activity in the digestive tract and promoted obesity and hyperlipidemia when the mice were fed high fat diets. Above all, the present research resulted in a fluorescence visualization tool for the functional investigation of gut microbiota associated with obesity and disorders of lipid metabolism.


Subject(s)
Basidiomycota , Fluorescent Dyes , Obesity , Animals , Basidiomycota/classification , Diet, High-Fat , Humans , Lipase , Mice , Mice, Inbred C57BL , Obesity/microbiology , Yeasts
11.
Int J Med Mushrooms ; 24(4): 53-62, 2022.
Article in English | MEDLINE | ID: mdl-35695596

ABSTRACT

Mushrooms are rich in various nutrients and secondary metabolites. In this study, the contents of macroelements, trace elements, and some nonessential elements of wild basidiocarps of Fuscoporia torulosa, Inonotus pachyphloeus, Phellinus allardii, Ph. fastuosus, Ph. gilvus, and Ph. sanfordii (Hymenochaetaceae) collected from India was determined with wavelength dispersive X-ray fluorescence spectrometry. Vitamins A, C, D2, and E (α-tocopherol) contents were analyzed with high-performance liquid chromatography and titration methods. Ph. gilvus contained the highest number (n = 21) and highest content of most of the elements. The mushrooms were rich in microelements, including Ca (80-2610 mg/kg dw), Cl (39.63-240 mg/kg dw), K (246.7-2620 mg/kg dw), Mg (96.6-500 mg/kg dw), Na (9.56-56 mg/kg dw), P (39.5-126.7 mg/kg dw), and S (69.37-170 mg/kg dw). Many trace elements (Co, Cr, Cu, Fe, Mn, Mo, Ni, Si, V, and Zn) and some nonessential elements (Al, Ba, Br, Rb, Sr, Ti, and Zr) were also detected in the mushroom species tested. There was a significant (P < 0.05) correlation (r > 0.9) between Al and Fe as well as Cu and Ti pairs. Correlation data provide an indication of interrelations between any two elements. Among vitamins, C (9.32 mg/100 g dw) and D2 (1.55 mg/100 g dw) were found in the highest amount in F. torulosa, while the lowest vitamin contents were present in Ph. fastuosus and Ph. allardii, respectively. Vitamins A and E were below the quantification limits. These results will be beneficial in deciding on the amount of these mushrooms in nutraceutical and drug formulations.


Subject(s)
Basidiomycota/chemistry , Minerals/analysis , Trace Elements/analysis , Vitamins/analysis , Basidiomycota/classification , Fruiting Bodies, Fungal/chemistry , India
12.
Sci Rep ; 12(1): 2826, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181709

ABSTRACT

Dry dipterocarp forests are among the most common habitat types in Thailand. Russulaceae are known as common ectomycorrhizal symbionts of Dipterocarpaceae trees in this type of habitat. The present study aims to identify collections of Russula subsection Amoeninae Buyck from dry dipterocarp forests in Thailand. A multi-locus phylogenetic analysis placed Thai Amoeninae collections in two novel lineages, and they are described here as R. bellissima sp. nov. and R. luteonana sp. nov. The closest identified relatives of both species were sequestrate species suggesting that they may belong to drought-adapted lineages. An analysis of publicly available ITS sequences in R. subsect. Amoeninae did not confirm evidence of any of the new species occurring in other Asian regions, indicating that dry dipterocarp forests might harbor a novel community of ectomycorrhizal fungi. Macromorphological characters are variable and are not totally reliable for distinguishing the new species from other previously described Asian Amoeninae species. Both new species are defined by a combination of differentiated micromorphological characteristics in spore ornamentation, hymenial cystidia and hyphal terminations in the pileipellis. The new Amoeninae species may correspond to some Russula species collected for consumption in Thailand, and the detailed description of the new species can be used for better identification of edible species and food safety in the region.


Subject(s)
Basidiomycota/genetics , DNA, Fungal/isolation & purification , Dipterocarpaceae/genetics , Phylogeny , Basidiomycota/classification , DNA, Fungal/genetics , Dipterocarpaceae/classification , Ecosystem , Forests , Mycorrhizae/classification , Mycorrhizae/genetics , Thailand , Tropical Climate
13.
Article in English | MEDLINE | ID: mdl-35225759

ABSTRACT

Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.


Subject(s)
Basidiomycota , Bromeliaceae/microbiology , Phylogeny , Base Composition , Basidiomycota/classification , Basidiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Sequence Analysis, DNA
14.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34726589

ABSTRACT

During studies of yeasts associated with soil in a Cerrado-Atlantic Rain Forest ecotone site in Brazil, three orange-pigmented yeast strains were isolated from samples collected in Minas Gerais state, Brazil. Molecular analyses combining the 26S rRNA gene (D1/D2 domains) and the internal transcribed spacer (ITS) sequences as well as whole-genome sequence data showed that these strains could not be ascribed to any known species in the basidiomycetous genus Phaffia, and thus they are considered to represent a novel species for which the name Phaffia brasiliana sp. nov. is proposed. The holotype is CBS 16121T and the MycoBank number is MB 839315. The occurrence of P. brasiliana in a tropical region is unique for the genus, since all other species occur in temperate regions. Two factors appear to contribute to the distribution of the novel taxon: first, the region where it was found has relatively moderate temperature ranges and, second, an adaptation to grow or withstand temperatures higher than those of the other species in the genus seems to be in place.


Subject(s)
Basidiomycota/classification , Phylogeny , Rainforest , Soil Microbiology , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
PLoS One ; 16(10): e0257616, 2021.
Article in English | MEDLINE | ID: mdl-34644307

ABSTRACT

Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide. Nevertheless, their diversity in the tropics is still poorly known. This study aims to contribute to the knowledge of the diversity of Russula species classified in subsection Roseinae based on specimens recently collected in tropical montane rainforests in western Panama. A five gene multilocus phylogeny based on the nuclear markers ITS nrDNA, MCM7, RPB1, RPB2 and TEF-1α was constructed to identify the systematic position of 22 collections from Panama. Four new species, Russula cornicolor, Russula cynorhodon, Russula oreomunneae and Russula zephyrovelutipes are formally described and illustrated. None of the four species are sister species and they are more closely related to North American or Asian species. Two of the newly described species were associated with the ectomycorrhizal tree species Oreomunnea mexicana, while the other two species were associated with Quercus species. All four species are so far only known from mountains in western Panama.


Subject(s)
Basidiomycota/classification , Mycorrhizae/classification , Basidiomycota/genetics , Biodiversity , DNA, Fungal/genetics , Forests , Mycorrhizae/genetics , Panama , Phylogeny , Species Specificity , Tropical Climate
16.
Acta amaz ; 51(3): 244-249, set 2021. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1455401

ABSTRACT

Two new species of Pucciniales fungi on plants of the Fabid clade are described from samples deposited in the herbarium of Museu Paraense Emilio Goeldi, collected in the state of Amapá, in the Brazilian Amazon. They are Aecidium margaritariae found on Margaritaria nobilis (Phyllanthaceae), and Uromyces amapaensis on Jatropha gossypiifolia (Euphorbiaceae). The microstructures of the specimens were analyzed using optical and scanning electron microscopy. Aecidium margaritariae is characterized by the presence of globose, subglobose to slightly ellipsoid aeciospores with warty walls and smooth areas usually in the basal portion. Uromyces amapaensis is distinguished by the presence of uredinia with paraphyses which are thickened and rounded at the tip, and pedicellate and smooth teliospores. Descriptions, illustrations, and taxonomic comments are presented for each species.


Duas novas espécies de fungos Pucciniales sobre plantas do clado das fabídeas são descritas a partir de amostras depositadas no herbário do Museu Paraense Emílio Goeldi, coletadas no estado do Amapá, na Amazonia Brasileira. Aecidium margaritariae ocorrendo sobre Margaritaria nobilis (Phyllanthaceae) e Uromyces amapaensis sobre Jatropha gossypiifolia (Euphorbiaceae). As microestruturas dos espécimes foram analisadas em microscópio óptico e em microscopia eletrônica de varredura. Aecidium margaritariae se caracteriza por apresentar eciósporos globosos, subglobosos a levemente elipsoides, parede verrugosa com áreas lisas geralmente na extremidade basal. Uromyces amapaensis se diferencia por apresentar uredínios com paráfises engrossadas e arredondadas no ápice e teliósporos pedicelados, lisos. São apresentadas descrições, ilustrações e comentários taxonômicos para cada espécie.


Subject(s)
Basidiomycota/classification
17.
PLoS One ; 16(8): e0250477, 2021.
Article in English | MEDLINE | ID: mdl-34351916

ABSTRACT

Morphology of organisms is an essential source of evidence for taxonomic decisions and understanding of ecology and evolutionary history. The geometric structure (i.e., numeric description of shape) provides richer and mathematically different information about an organism's morphology than linear measurements. A little is known on how these two sources of morphological information (shape vs. size) contribute to the identification of organisms when implied simultaneously. This study hypothesized that combining geometric information on the outline with linear measurements results in better species identification than either evidence alone can provide. As a test system for our research, we used the microscopic spores of fungi from the genus Subulicystidium (Agaricomycetes, Basidiomycota). We analyzed 2D spore shape data via elliptic Fourier and principal component analyses. Using flexible discriminant analysis, we achieved the highest species identification success rate for a combination of shape and size descriptors (64.7%). The shape descriptors alone predicted species slightly better than size descriptors (61.5% vs. 59.1%). We conclude that adding geometric information on the outline to linear measurements improves the identification of the organisms. Despite the high relevance of spore traits for the taxonomy of fungi, they were previously rarely analyzed with the tools of geometric morphometrics. Therefore, we supplement our study with an open access protocol for digitizing and summarizing fungal spores' shape and size information. We propagate a broader use of geometric morphometric analysis for microscopic propagules of fungi and other organisms.


Subject(s)
Basidiomycota , Image Processing, Computer-Assisted , Spores, Fungal/cytology , Basidiomycota/classification , Basidiomycota/cytology , Spores, Fungal/classification
18.
Commun Biol ; 4(1): 871, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267314

ABSTRACT

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Subject(s)
Biotechnology/methods , Coloring Agents/metabolism , Fungi/metabolism , Industrial Microbiology/methods , Lignin/metabolism , Plastics/metabolism , Ascomycota/classification , Ascomycota/genetics , Ascomycota/metabolism , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/metabolism , Fungi/classification , Fungi/genetics , Genetic Variation , Geography , Humans , Phenotype , Phylogeny , Species Specificity
19.
Article in English | MEDLINE | ID: mdl-34214028

ABSTRACT

Sporobolomyces lactosus is a pink yeast-like fungus that is not congeneric with other members of Sporobolomyces (Basidiomycota, Microbotryomycetes, Sporidiobolales). During our ongoing studies of pink yeasts we determined that S. lactosus was most closely related to Pseudeurotium zonatum (Ascomycota, Leotiomycetes, Thelebolales). A molecular phylogenetic analysis using sequences of the ITS region and the small and large subunit (SSU, LSU) rRNA genes, indicated that four isolates of S. lactosus, including three ex-type isolates, were placed in Thelebolales with maximum support. A new genus is proposed to accommodate S. lactosus, Inopinatum. This is the first pink yeast reported in Leotiomycetes.


Subject(s)
Basidiomycota/classification , Phylogeny , Basidiomycota/isolation & purification , DNA, Fungal/genetics , Pigmentation , Poland , RNA, Ribosomal/genetics , Sequence Analysis, DNA
20.
Microbes Environ ; 36(2)2021.
Article in English | MEDLINE | ID: mdl-34135204

ABSTRACT

Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.


Subject(s)
Basidiomycota/classification , Basidiomycota/isolation & purification , Snow/microbiology , Antarctic Regions , Basidiomycota/genetics , Ice Cover/microbiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...