Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 907
Filter
1.
Sci Rep ; 14(1): 9188, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649733

ABSTRACT

This study assessed Rhodotorula paludigena CM33's growth and ß-carotene production in a 22-L bioreactor for potential use as an aquatic animal feed supplement. Optimizing the feed medium's micronutrient concentration for high-cell-density fed-batch cultivation using glucose as the carbon source yielded biomass of 89.84 g/L and ß-carotene concentration of 251.64 mg/L. Notably, using sucrose as the carbon source in feed medium outperforms glucose feeds, resulting in a ß-carotene concentration of 285.00 mg/L with a similar biomass of 87.78 g/L. In the fed-batch fermentation using Sucrose Feed Medium, R. paludigena CM33 exhibited high biomass production rates (Qx) of 0.91 g/L.h and remarkable ß-carotene production rates (Qp) of 2.97 mg/L.h. In vitro digestibility assays showed that R. paludigena CM33, especially when cultivated using sucrose, enhances protein digestibility affirming its suitability as an aquatic feed supplement. Furthermore, R. paludigena CM33's nutrient-rich profile and probiotic potential make it an attractive option for aquatic nutrition. This research highlights the importance of cost-effective carbon sources in large-scale ß-carotene production for aquatic animal nutrition.


Subject(s)
Biomass , Rhodotorula , beta Carotene , Rhodotorula/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Animals , Animal Feed , Fermentation , Bioreactors , Sucrose/metabolism , Glucose/metabolism , Culture Media/chemistry , Batch Cell Culture Techniques/methods , Aquatic Organisms/metabolism
2.
Bioresour Technol ; 401: 130734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670288

ABSTRACT

Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.


Subject(s)
Bioreactors , Cells, Immobilized , Dihydroxyacetone , Glycerol , Dihydroxyacetone/metabolism , Cells, Immobilized/metabolism , Glycerol/metabolism , Fermentation , Batch Cell Culture Techniques/methods , Perfusion , Catalysis , Biocatalysis
3.
J Biosci Bioeng ; 137(6): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472071

ABSTRACT

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.


Subject(s)
Antibodies, Monoclonal , Biological Products , Bioreactors , Cricetulus , Recombinant Proteins , CHO Cells , Animals , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Cricetinae , Antibodies, Monoclonal/biosynthesis , Biological Products/metabolism , Immunoglobulin G/metabolism , Cell Culture Techniques/methods , Humans , Batch Cell Culture Techniques/methods
4.
Biotechnol Bioeng ; 121(6): 1774-1788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433473

ABSTRACT

The biopharmaceutical industry is replacing fed-batch with perfusion processes to take advantage of reduced capital and operational costs due to the operation at high cell densities (HCD) and improved productivities. HCDs are achieved by cell retention and continuous medium exchange, which is often based on the cell-specific perfusion rate (CSPR). To obtain a cost-productive process the perfusion rate must be determined for each process individually. However, determining optimal operating conditions remain labor-intensive and time-consuming experiments, as investigations are performed in lab-scale perfusion bioreactors. Small-scale models such as microwell plates (MWPs) provide an option for screening multiple perfusion rates in parallel in a semi-perfusion mimic. This study investigated two perfusion rate strategies applied to the MWP platform operated in semi-perfusion. The CSPR-based perfusion rate strategy aimed to maintain multiple CSPR values throughout the cultivation and was compared to a cultivation with a perfusion rate of 1 RV d-1. The cellular performance was investigated with the dual aim (i) to achieve HCD, when inoculating at conventional and HCDs, and (ii) to maintain HCDs, when applying an additional manual cell bleed. With both perfusion rate strategies viable cell concentrations up to 50 × 106 cells mL-1 were achieved and comparable results for key metabolites and antibody product titers were obtained. Furthermore, the combined application of cell bleed and CSPR-based medium exchange was successfully shown with similar results for growth, metabolites, and productivities, respectively, while reducing the medium consumption by up to 50% for HCD cultivations.


Subject(s)
Bioreactors , Cricetulus , CHO Cells , Animals , Perfusion/methods , Perfusion/instrumentation , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , High-Throughput Screening Assays/methods , Cell Count , Batch Cell Culture Techniques/methods , Batch Cell Culture Techniques/instrumentation
5.
Biotechnol Bioeng ; 121(4): 1394-1406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214104

ABSTRACT

Dynamic flux balance analysis (FBA) allows estimation of intracellular reaction rates using organism-specific genome-scale metabolic models (GSMM) and by assuming instantaneous pseudo-steady states for processes that are inherently dynamic. This technique is well-suited for industrial bioprocesses employing complex media characterized by a hierarchy of substrate uptake and product secretion. However, knowledge of exchange rates of many components of the media would be required to obtain meaningful results. Here, we performed spent media analysis using mass spectrometry coupled with liquid and gas chromatography for a fed-batch, high-cell density cultivation of Escherichia coli BL21(DE3) expressing a recombinant protein. Time course measurements thus obtained for 246 metabolites were converted to instantaneous exchange rates. These were then used as constraints for dynamic FBA using a previously reported GSMM, thus providing insights into how the flux map evolves through the process. Changes in tri-carboxylic acid cycle fluxes correlated with the increased demand for energy during recombinant protein production. The results show how amino acids act as hubs for the synthesis of other cellular metabolites. Our results provide a deeper understanding of an industrial bioprocess and will have implications in further optimizing the process.


Subject(s)
Batch Cell Culture Techniques , Models, Biological , Batch Cell Culture Techniques/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Mass Spectrometry , Recombinant Proteins/metabolism , Culture Media/metabolism
6.
Appl Microbiol Biotechnol ; 108(1): 123, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229404

ABSTRACT

There is a growing interest in perfusion or continuous processes to achieve higher productivity of biopharmaceuticals in mammalian cell culture, specifically Chinese hamster ovary (CHO) cells, towards advanced biomanufacturing. These intensified bioprocesses highly require concentrated feed media in order to counteract their dilution effects. However, designing such condensed media formulation poses several challenges, particularly regarding the stability and solubility of specific amino acids. To address the difficulty and complexity in relevant media development, the biopharmaceutical industry has recently suggested forming dipeptides by combining one from problematic amino acids with selected pairs to compensate for limitations. In this study, we combined one of the lead amino acids, L-tyrosine, which is known for its poor solubility in water due to its aromatic ring and hydroxyl group, with glycine as the partner, thus forming glycyl-L-tyrosine (GY) dipeptide. Subsequently, we investigated the utilization of GY dipeptide during fed-batch cultures of IgG-producing CHO cells, by changing its concentrations (0.125 × , 0.25 × , 0.5 × , 1.0 × , and 2.0 ×). Multivariate statistical analysis of culture profiles was then conducted to identify and correlate the most significant nutrients with the production, followed by in silico model-guided analysis to systematically evaluate their effects on the culture performance, and elucidate metabolic states and cellular behaviors. As such, it allowed us to explain how the cells can more efficiently utilize GY dipeptide with respect to the balance of cofactor regeneration and energy distribution for the required biomass and protein synthesis. For example, our analysis results uncovered specific amino acids (Asn and Gln) and the 0.5 × GY dipeptide in the feed medium synergistically alleviated the metabolic bottleneck, resulting in enhanced IgG titer and productivity. In the validation experiments, we tested and observed that lower levels of Asn and Gln led to decreased secretion of toxic metabolites, enhanced longevity, and elevated specific cell growth and titer. KEY POINTS: • Explored the optimal Tyr dipeptide for the enhanced CHO cell culture performance • Systematically analyzed effects of dipeptide media by model-guided approach • Uncovered synergistic metabolic utilization of amino acids with dipeptide.


Subject(s)
Amino Acids , Batch Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Culture Media/chemistry , Batch Cell Culture Techniques/methods , Amino Acids/metabolism , Tyrosine , Dipeptides , Immunoglobulin G , Computer Simulation
7.
Biotechnol J ; 19(1): e2300395, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180295

ABSTRACT

The mammalian cell culture process is a key step in commercial therapeutic protein production and needs to be monitored and controlled due to its complexity. Raman spectroscopy has been reported for cell culture process monitoring by analysis of many important parameters. However, studies on in-line Raman monitoring of the cell culture process were mainly conducted on small or pilot scale. Developing in-line Raman analytical methods for commercial-scale cell culture process monitoring is more challenging. In this study, an in-line Raman analytical method was developed for monitoring glucose, lactate, and viable cell density (VCD) in the Chinese hamster ovary (CHO) cell culture process during commercial production of biosimilar adalimumab (1500 L). The influence of different Raman measurement channels was considered to determine whether to merge data from different channels for model development. Raman calibration models were developed and optimized, with minimum root mean square error of prediction of 0.22 g L-1 for glucose in the range of 1.66-3.53 g L-1 , 0.08 g L-1 for lactate in the range of 0.15-1.19 g L-1 , 0.31 E6 cells mL-1 for VCD in the range of 0.96-5.68 E6 cells mL-1 on test sets. The developed analytical method can be used for cell culture process monitoring during manufacturing and meets the analytical purpose of this study. Further, the influence of the number of batches used for model calibration on model performance was also studied to determine how many batches are needed basically for method development. The proposed Raman analytical method development strategy and considerations will be useful for monitoring of similar bioprocesses.


Subject(s)
Bioreactors , Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Cell Culture Techniques/methods , Lactic Acid/metabolism , Spectrum Analysis, Raman/methods , Glucose/metabolism , Batch Cell Culture Techniques/methods
8.
Biotechnol Bioeng ; 121(4): 1371-1383, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38079117

ABSTRACT

Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Cricetinae , Animals , Cricetulus , CHO Cells , Batch Cell Culture Techniques/methods , Perfusion
9.
Biotechnol Prog ; 40(2): e3405, 2024.
Article in English | MEDLINE | ID: mdl-37997628

ABSTRACT

Mammalian cells remain the mainstay of biological production host. In industry, cultivating and harvest strategies are sorted in batch mode (e.g., batch, fed-batch, concentrated fed-batch and intensified fed-batch) and continuous mode (e.g., perfusion). To retrieve greater productivity and better product quality, especially for the sensitive products prone to fragmentation, culture modes with various modifications are innovated (e.g., intensified perfusion culture [IPC]). In our study, we demonstrated that the fragmentation of Fc-fusion product (Molecule A) is time-dependent in traditional fed-batch (TFB) culture. The fragmentation proportion increased from 3.8% to 12.4% for Clone A, 0.8% to 1.7% for Clone B and 0.9% to 2.0% for Clone C from Day 10 to Day 14. By applying a novel bioprocess, IPC, which allows continuous feeding of the fresh medium and constant removal of the spent medium without bleeding cells to maintain a defined constant viable cell density, the fragmentation was reduced to 0.3% while the productivity was increased from 2.96 g/L to 15.51 g/L for Clone A. To validate whether the fragmentation reduction is product-sensitive, plasmids carrying the DNA sequences of two other Fc-fusion molecules (Molecule B and Molecule C) were transfected into the host. The results showed consistent fragmentation reducing effect by using IPC. Furthermore, the cultivation scale was expanded to 50 L and 1000 L. A minimum fragmentation level below 0.1% was observed for Molecule C. Our study revealed the capability of IPC in reducing Fc-fusion protein fragmentation and the reproducibility when scaling up while maintaining high productivity.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Animals , Cricetinae , Reproducibility of Results , Recombinant Proteins , Batch Cell Culture Techniques/methods , CHO Cells , Perfusion , Mammals
10.
Biotechnol Prog ; 40(2): e3410, 2024.
Article in English | MEDLINE | ID: mdl-38013663

ABSTRACT

An important consideration for biopharmaceutical processes is the cost of goods (CoGs) of biotherapeutics manufacturing. CoGs can be reduced by dramatically increasing the productivity of the bioreactor process. In this study, we demonstrate that an intensified process which couples a perfused N-1 seed reactor and a fully automated high inoculation density (HID) N stage reactor substantially increases the bioreactor productivity as compared to a low inoculation density (LID) control fed-batch process. A panel of six CHOK1SV GS-KO® CHO cell lines expressing three different monoclonal antibodies was evaluated in this intensified process, achieving an average 85% titer increase and 132% space-time yield (STY) increase was demonstrated when comparing the 12-day HID process to a 15-day LID control process. These productivity increases were enabled by automated nutrient feeding in both the N-1 and N stage bioreactors using in-line process analytical technologies (PAT) and feedback control. The N-1 bioreactor utilized in-line capacitance to automatically feed the bioreactor based on a capacitance-specific perfusion rate (CapSPR). The N-stage bioreactor utilized in-line Raman spectroscopy to estimate real-time concentrations of glucose, phenylalanine, and methionine, which are held to target set points using automatic feed additions. These automated feeding methodologies were shown to be generalizable across six cell lines with diverse feed requirements. We show this new process can accommodate clonal diversity and reproducibly achieve substantial titer uplifts compared to traditional cell culture processes, thereby establishing a baseline technology platform upon which further increases bioreactor productivity and CoGs reduction can be achieved.


Subject(s)
Antibodies, Monoclonal , Bioreactors , Cricetinae , Animals , Cricetulus , CHO Cells , Antibodies, Monoclonal/metabolism , Perfusion , Batch Cell Culture Techniques/methods
11.
Biologicals ; 84: 101713, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793309

ABSTRACT

In the current transition to intensified upstream processing, the risks of adopting traditional single-use systems for high-titer, long-duration perfusion cultures, have thus far not been considered. This case study uses the Failure Modes and Effects Analysis (FMEA) method to evaluate the risks associated with implementing upstream single-use technology. The simulated model process was used to compare the risk level of single-use technology for a traditional fed-batch cell culture with that for perfusion culture, under the same annual protein production conditions. To provide a reasonable source of potential risk for FMEA, all single-use upstream operations for both fed-batch and perfusion processes were investigated using an analytical method developed to quantify the impact of process parameters and operating conditions on single-use system specifications and to ensure objectivity. Many of the risks and their levels, were similar in long-duration perfusion cultures and fed-batch cultures. However, differences were observed for high-risk components such as daily sampling and installation. The result of this analysis indicates that the reasons for risk are different for fed-batch cultures and perfusion cultures such as larger bioreactors in fed-batch and longer runs in perfusion, respectively. This risk assessment method could identify additional control measures and be part of a holistic contamination control strategy and help visualize their effectiveness.


Subject(s)
Biological Products , Animals , Cricetinae , Bioreactors , Batch Cell Culture Techniques/methods , Antibodies, Monoclonal , Perfusion , Cricetulus
12.
Biotechnol Prog ; 39(6): e3380, 2023.
Article in English | MEDLINE | ID: mdl-37531362

ABSTRACT

In cell culture process development, we rely largely on an iterative, one-factor-at-a-time procedure based on experiments that explore a limited process space. Design of experiments (DoE) addresses this issue by allowing us to analyze the effects of process inputs on process responses systematically and efficiently. However, DoE cannot be applied directly to study time-varying process inputs unless an impractically large number of bioreactors is used. Here, we adopt the methodology of design of dynamic experiments (DoDE) and incorporate dynamic feeding profiles efficiently in late-stage process development of the manufacture of therapeutic monoclonal antibodies. We found that, for the specific cell line used in this article, (1) not only can we estimate the effect of nutrient feed amount on various product attributes, but we can also estimate the effect, develop a statistical model, and use the model to optimize the slope of time-trended feed rates; (2) in addition to the slope, higher-order dynamic characteristics of time-trended feed rates can be incorporated in the design but do not have any significant effect on the responses we measured. Based on the DoDE data, we developed a statistical model and used the model to optimize several process conditions. Our effort resulted in a tangible improvement in productivity-compared with the baseline process without dynamic feeding, this optimized process in a 200-L batch achieved a 27% increase in titer and > 92% viability. We anticipate our application of DoDE to be a starting point for more efficient workflows to optimize dynamic process conditions in process development.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Cricetinae , Animals , Batch Cell Culture Techniques/methods , Antibodies, Monoclonal/metabolism , Cell Line , Models, Statistical , CHO Cells , Cricetulus
13.
Biotechnol Bioeng ; 120(11): 3177-3190, 2023 11.
Article in English | MEDLINE | ID: mdl-37555462

ABSTRACT

Stable, highly productive mammalian cells are critical for manufacturing affordable and effective biological medicines. Establishing a rational design of optimal biotherapeutic expression systems requires understanding how cells support the high demand for efficient biologics production. To that end, we performed transcriptomics and high-throughput imaging studies to identify putative genes and morphological features that underpin differences in antibody productivity among clones from a Chinese hamster ovary cell line. During log phase growth, we found that the expression of genes involved in biological processes related to cellular morphology varied significantly between clones with high specific productivity (qP > 35 pg/cell/day) and low specific productivity (qP < 20 pg/cell/day). At Day 10 of a fed-batch production run, near peak viable cell density, differences in gene expression related to metabolism, epigenetic regulation, and proliferation became prominent. Furthermore, we identified a subset of genes whose expression predicted overall productivity, including glutathione synthetase (Gss) and lactate dehydrogenase A (LDHA). Finally, we demonstrated the feasibility of cell painting coupled with high-throughput imaging to assess the morphological properties of intracellular organelles in relation to growth and productivity in fed-batch production. Our efforts lay the groundwork for systematic elucidation of clone performance using a multiomics approach that can guide future process design strategies.


Subject(s)
Epigenesis, Genetic , Transcriptome , Cricetinae , Animals , Cricetulus , CHO Cells , Transcriptome/genetics , Clone Cells , Recombinant Proteins/genetics , Batch Cell Culture Techniques/methods
14.
Biotechnol J ; 18(7): e2200616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37102403

ABSTRACT

Controlling the process of CHO cell fed-batch culture is critical for biologics quality control. However, the biological complexity of cells has hampered the reliable process understanding for industrial manufacturing. In this study, a workflow was developed for the consistency monitoring and biochemical marker identification of the commercial-scale CHO cell culture process through 1 H NMR assisted with multivariate data analysis (MVDA). Firstly, a total of 63 metabolites were identified in this study object in 1 H NMR spectra of the CHO cell-free supernatants. Secondly, multivariate statistical process control (MSPC) charts were used to evaluate process consistency. According to MSPC charts, the batch-to-batch quality consistency was high, indicating the CHO cell culture process at the commercial scale was well-controlled and stable. Then, the biochemical marker identification was provided through orthogonal partial least square discriminant analysis (OPLS-DA) based S-line plots during the cell logarithmic expansion, stable growth, and decline phases. Identified biochemical markers of the three cell growth phases were as follows: L-glutamine, pyroglutamic acid, 4-hydroxyproline, choline, glucose, lactate, alanine, and proline were of the logarithmic growth phase; isoleucine, leucine, valine, acetate, and alanine were of the stable growth phase; acetate, glycine, glycerin, and gluconic acid were of the cell decline phase. Additional potential metabolic pathways that might influence the cell culture phase transitions were demonstrated. The workflow proposed in this study demonstrates that the combination of MVDA tools and 1 H NMR technology is highly appealing to the research of the biomanufacturing process, and applies well to provide guidance in future work on consistency evaluation and biochemical marker monitoring of the production of other biologics.


Subject(s)
Batch Cell Culture Techniques , Biological Products , Cricetinae , Animals , Cricetulus , Batch Cell Culture Techniques/methods , Biomarkers , Alanine , CHO Cells , Lactic Acid/metabolism
15.
Biotechnol Bioeng ; 120(9): 2542-2558, 2023 09.
Article in English | MEDLINE | ID: mdl-37096798

ABSTRACT

Previously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over-supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed-batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed-batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.


Subject(s)
Amino Acids , Batch Cell Culture Techniques , Cricetinae , Animals , Cricetulus , Amino Acids/metabolism , CHO Cells , Culture Media/chemistry , Batch Cell Culture Techniques/methods
16.
Prep Biochem Biotechnol ; 53(9): 1081-1091, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36756987

ABSTRACT

Chinese hamster ovary (CHO) cells are commonly used as "bio-machines" to pro-duce monoclonal antibodies (mAb) because of their ability to produce very complex proteins. In this study, we evaluated the effects of pine needle water extract (PNWE), pine needle ethanol extract (PNEE), and pine needle polysaccharide extract (PNPE) on the CHO cell growth, mAb production and quality using a Fed-batch culture process. PNPE maintained high VCD and viability, and the titer increase was correlated with its concentration. Three extracts effectively reduced the acidic charge variant and modulated mAb glycosylation. PNPE had the most profound effect, with G0F decreasing by 8.7% and G1Fa increasing by 6.7%. The change in the glycoform was also closely related to the PNPE concentration. This study demonstrated that PNPE could facilitate CHO cell growth, increase the mAb production, decrease acidic charge variants, and regulate mAb glycoforms. To identify the components responsible for the above changes, the sugar and flavonoid contents in the extracts were determined, and the chemical compounds were identified by LC-MS, resulting in 38 compounds identified from PNPE. Rich in sugars and flavonoids in these three extracts may be related to increased CHO cell growth and productivity, and changes in glycoforms.


Subject(s)
Antibodies, Monoclonal , Batch Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Batch Cell Culture Techniques/methods
17.
Biotechnol Prog ; 39(3): e3327, 2023.
Article in English | MEDLINE | ID: mdl-36700684

ABSTRACT

High demand in manufactured biologics drives the continued need for increased productivity. In this study elevated lactate metabolization resulted in improved metabolic efficiency and cellular productivity for a readily intensified high titer fed-batch process. Scheduled base or lactate feeds during the stationary growth phase led to increased titers (+9% and +8% respectively) without impacting the overall growth performance. The higher lactate consumption induced by either feed strategy substituted for glutamate catabolism and consequently reduced ammonia build-up. Direct correlation between increased titers and reduced ammonia levels was shown. Product quality attributes were impacted by both feeding strategies but could be matched with the control process by shortening the cell culture duration while maintaining titer constant.


Subject(s)
Ammonia , Bioreactors , Cricetinae , Animals , Cricetulus , CHO Cells , Ammonia/metabolism , Batch Cell Culture Techniques/methods , Lactic Acid/metabolism
18.
Biotechnol Bioeng ; 120(3): 715-725, 2023 03.
Article in English | MEDLINE | ID: mdl-36411514

ABSTRACT

Due to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge. Moreover, academic, and nonprofit researchers generally cannot study "industrially relevant" CHO cells due to limited public availability, and the time and knowledge required to generate such cells. To address these issues, a university-industrial consortium (Advanced Mammalian Biomanufacturing Innovation Center, AMBIC) has acquired two CHO "reference cell lines" from different lineages that express monoclonal antibodies. These reference cell lines have relevant production titers, key performance outcomes confirmed by multiple laboratories, and a detailed technology transfer protocol. In commercial media, titers over 2 g/L are reached. Fed-batch cultivation data from shake flask and scaled-down bioreactors is presented. Using productivity as the primary attribute, two academic sites aligned with tight reproducibility at each site. Further, a chemically defined media formulation was developed and evaluated in parallel to the commercial media. The goal of this work is to provide a universal, industrially relevant CHO culture platform to accelerate biomanufacturing innovation.


Subject(s)
Antibodies, Monoclonal , Bioreactors , Cricetinae , Animals , Cricetulus , CHO Cells , Reproducibility of Results , Batch Cell Culture Techniques/methods
19.
Biotechnol Prog ; 39(2): e3313, 2023 03.
Article in English | MEDLINE | ID: mdl-36367527

ABSTRACT

Therapeutic protein productivity and glycosylation pattern highly rely on cell metabolism. Cell culture medium composition and feeding strategy are critical to regulate cell metabolism. In this study, the relationship between toxic metabolic inhibitors and their nutrient precursors was explored to identify the critical medium components toward cell growth and generation of metabolic by-products. Generic CHO metabolic model was tailored and integrated with CHO fed-batch metabolomic data to obtain a cell line- and process-specific model. Flux balance analysis study was conducted on toxic metabolites cytidine monophosphate, guanosine monophosphate and n-acetylputrescine-all of which were previously reported to generate from endogenous cell metabolism-by mapping them to a compartmentalized carbon utilization network. Using this approach, the study projected high level of inhibitory metabolites accumulation when comparing three industrially relevant fed-batch feeding conditions one against another, from which the results were validated via a dose-dependent amino acids spiking study. In the end, a medium optimization design was employed to lower the amount of supplemented nutrients, of which improvements in critical process performance were realized at 40% increase in peak viable cell density (VCD), 15% increase in integral VCD, and 37% increase in growth rate. Tight control of toxic by-products was also achieved, as the study measured decreased inhibitory metabolites accumulation across all conditions. Overall, the study successfully presented a digital twin approach to investigate the intertwined relationship between supplemented medium constituents and downstream toxic metabolites generated through host cell metabolism, further elucidating different control strategies capable of improving cellular phenotypes and regulating toxic inhibitors.


Subject(s)
Amino Acids , Nutrients , Cricetinae , Animals , Cricetulus , CHO Cells , Culture Media/chemistry , Amino Acids/metabolism , Batch Cell Culture Techniques/methods
20.
Curr Opin Biotechnol ; 78: 102828, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36332340

ABSTRACT

Upstream continuous processing, or most commonly perfusion processing, for biopharmaceutical production, is emerging as a feasible and viable manufacturing approach. Development in production of recombinant therapeutic proteins as well as viral vectors, vaccines, and cell therapy products, has numerous research publications that came out in previous years. Recent research areas are in perfusion-operation strategies maximizing and controlling bioreactor cell density, adding feed solution designed to supplement basal medium feed stream, combining cell line engineering with bioreactor conditions such as hypoxia, and implementing online process monitoring of cell density by capacitance sensor and metabolites by Raman spectroscopy. Perfusion applications are not limited to production process alone but include other upstream areas where high cell density process is essential such as in cell bank preparation, N-1 seed bioreactor, and combination with intensified fed-batch production process. This review covers recent advances in continuous processing over the last two years for biopharmaceutical production.


Subject(s)
Batch Cell Culture Techniques , Biological Products , Cricetinae , Animals , Batch Cell Culture Techniques/methods , CHO Cells , Cricetulus , Bioreactors , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...