Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 582
Filter
1.
Mar Pollut Bull ; 203: 116489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759463

ABSTRACT

Sansha and Luoyuan Bay are influenced by different industrial structure, but the sources and pollution status of polycyclic aromatic hydrocarbons (PAHs), especially alkylated PAHs, are poorly understood. We studied 25 PAHs in surface sediments from the two bays. The results showed that PAHs concentrations in Sansha and Luoyuan Bay sediment range from 6.54 to 479.28 ng/g and 118.82 to 2984.09 ng/g, respectively. Alkylated PAHs dominated in Sansha (48.86 % of Σ25PAHs), while 3-ring PAHs dominated in Luoyuan (36.32 % of ∑25PAHs). Results of sources analysis indicated oil spills as the main PAHs source in Sansha, and domestic emissions and fossil fuel combustion in Luoyuan. Ecological risk assessment of showed low sediment risk, but in Luoyuan was higher than in Sansha. Compared with Luoyuan Bay, Sansha Bay emits less industrial pollutants, so the pollution is lower than Luoyuan Bay. Increased attention to protecting Luoyuan Bay is recommended.


Subject(s)
Bays , Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/analysis , Bays/chemistry , Risk Assessment , East Asian People
2.
Chemosphere ; 359: 142245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735498

ABSTRACT

This study aimed to evaluate the concentration, distribution, along with the environmental and human health impact of eight heavy metals-Pb, Cr, Cu, Cd, Zn, Mn, Ni, and As-on St. Martin's Island in the northeastern Bay of Bengal, and in doing so to help implement new legislations to protect the island. Focusing on the island's significance as a tourist destination, with seafood being a prominent dietary component, three sample types (sediment, seawater, and crustaceans) were selected for a comprehensive assessment, considering seasonal variations. Concentration of metals was observed to be lower than the established standards in sediment samples, but in seawater samples, Pb, Cr, Cd and Zn were higher than US-EPA values for natural marine water. The metals displayed a decreasing trend of Zn > Ni > Pb > Cu > Mn > As > Cd > Cr in crustacean samples for both seasons. Crustacean samples displayed higher metal concentrations in winter than in monsoon. Pb exceeded the maximum allowable limit for crustaceans with a concentration of about 3 and 4 mg kg-1 in monsoon and winter respectively; being more than 6-8 times the standard for Bangladesh which is only about 0.5 mg kg-1. Health indices displayed that although adults may suffer less from carcinogenic/non-carcinogenic health effects, the risks are far greater for children. For both age groups, As and Ni displayed possibilities of developing cancer. Principal Component Analysis (PCA)shed light on the sources of metals and showed that most of them were from anthropogenic sources. Overall, this study found that the quality of the environment of the island was better in comparison to previous studies made before the pandemic, and so, if the trend continues, it may lead to a better environment for the organisms around the island and help to keep the negative physiological impacts from the consumption of these organisms to a minimal.


Subject(s)
Bays , Environmental Monitoring , Islands , Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Animals , Humans , Bays/chemistry , Seawater/chemistry , Geologic Sediments/chemistry , Anthozoa/chemistry , India , Seasons , Metals/analysis , Seafood/analysis , Crustacea
3.
Environ Geochem Health ; 46(5): 176, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649546

ABSTRACT

In the aquatic environment around the world, microplastic contamination has been a common and ongoing issue. Particularly, the ability of microplastics to absorb persistent organic pollutants (POPs) and then transmit these POPs to aquatic creatures has attracted a lot of interest. A stereomicroscope was used to detect the size, shape, and color of the microplastics (MPs), and Fourier Transform Infrared (FTIR) spectroscopy was used to identify the polymer composition of the MPs. To address MP transit, destiny, and mitigation, a study of MP pollution coastal areas is required. In the current study, MP pollution in the collected sample from upper layer of water and sediment of the Digha and Puri beaches along the coast of BOB was evaluated. The average concentration with SD of MPs observed in water was 5.3 ± 1.8 items/L whereas, in sediments, it was 173.4 ± 40.1 items/kg at Digha beach. The mean MPs abundance in the Puri beach was 6.4 ± 1.7 items/L in the water and 190.4 ± 28.0 items/kg in the sediments. The investigated total 16-PAHs concentrations were 164.7 ng/g, 121.9 ng/g, 73.6 ng/g, and 101.3 ng/g on the MPs surface of foam, fragment, fibers, and film respectively in the studied MPs sample. Smaller than 1000 µm size of MPs are distributed in the largest concentration. Fibers, films, fragments, and foam were the most common shapes of MPs. The molecular structure of MPs in water and sediment samples was analysed i.e., polyesters (PEs), polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polystyrene (PS), polyamide (PA), polycarbonates (PC), and polyurethane (PU). The obtained result offers an accurate assessment of the PLI, and the investigated polymer facilitates determining the polymer hazard levels, which emphasizes the risk associated with it.


Subject(s)
Environmental Monitoring , Geologic Sediments , Microplastics , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , India , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Spectroscopy, Fourier Transform Infrared , Risk Assessment , Bays/chemistry , Seawater/chemistry
4.
Environ Res ; 250: 118588, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38428563

ABSTRACT

Coastal estuaries are often heavily subject to riverine influences by the inputs of sediment from terrestrial sources. Hangzhou Bay (HZB) is threatened by the riverine derived trace metals from two large rivers of Qiantang River (QTR) and Yangtze River (YZR). However, previous studies mainly focused on the incidental transport from the largest river in China (YZR) and failed to simultaneously evaluate the contributions of these two rivers, especially the directly flowing river of QTR, by their trace elemental geochemical composition and distribution. Herein, a comprehensive study identified the river-derived sources of multiple trace metals in surface sediments which transported from both of the rivers. The sampling stations were separated into three regions of YZR, HZB, and QTR based on their spatial distributions of sediment grain size and components. The significant variations for most of the trace metals concentrations, except for Cd, Th, and U, were found among three regions (χ2 ≥ 8.22, p ≤ 0.016). The highest concentrations in HZB were mainly resulted from the grain size effect (68.82% of the total variance), while the highest concentrations of Sr, Cd, and Ba in YZR and Zr and Hf in QTR were attributed to the anthropogenic source (11.90%) and mineral composition (6.21%) of river basins. After normalized the diversity of multiple trace metals concentrations and the influence of grain size by ratios of Igeo and EFLi, three regions were effectively distinguished. It was indicated that As, Cd, and Sb were enriched in the sediments of rivers by anthropogenic source (EFLi > 1.5 and/or Igeo > 1). The results evidenced that, after removing the influence of grain size, elemental geochemical composition of the surface sediments confidently identified the river-derived anthropogenic sources of the enriched trace metals from two major rivers, and largely from YZR.


Subject(s)
Bays , Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , China , Rivers/chemistry , Water Pollutants, Chemical/analysis , Bays/chemistry , Trace Elements/analysis , Metals/analysis
5.
Environ Sci Pollut Res Int ; 31(9): 14254-14269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273087

ABSTRACT

The Sepetiba Bay (Southeast Brazil) is a known Cd- and Zn-contaminated site that received spills of a large slag pile leachate from a Zn smelter. With important harbors, Sepetiba Bay demands periodic dredging operations which affect the mobility of the metals. The main goal of this work was to assess metal mobility in sediments and its associated toxicity in a fictive dredging area, to evaluate the risks of the operation. To achieve this goal, 18 superficial sediment samples were collected and characterized for pH and Eh. Sediments were analyzed for grain size, organic carbon, and total nitrogen, and metal mobility was evaluated with a sequential extraction procedure, proposed by the European Community Bureau of Reference (BCR). The results demonstrate that Cd and Zn are mainly associated with the exchangeable fraction (mean concentrations 1.4 mg kg-1 and 149.4 mg kg-1, respectively) and reducible fractions (mean concentrations 0.3 mg kg-1 and 65.5 mg kg-1, respectively), while Fe, Cr, Cu, Ni, and Al were associated with the residual fraction. Metals in the residual fraction are probably associated with the mineral lattice of the sediment and should not represent an environmental risk for the biota. The application of the enrichment factor and three risk assessment indexes (Risk Assessment Code, Risky Pollution Index, and Bioavailability Risk Assessment Index) show that the sediments are considerably enriched in metals that constitute a relevant risk for the sediment biota. In the case of dredging operations, Cd and Zn should be released to the overlying waters and be available to organisms, threatening the whole ecosystem. The proposed approach was shown to be much more precise than what is frequently presented in the Environmental Impact Assessments that only consider the threshold limits of the legislation.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Cadmium , Bays/chemistry , Ecosystem , Brazil , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Risk Assessment
6.
Environ Sci Pollut Res Int ; 31(6): 8703-8718, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180669

ABSTRACT

Due to their extremely toxic properties, 226Ra and it daughters (222Rn, 210Pb, and 210Po) in drinking groundwater require monitoring. Recent studies have reported exceptionally high levels of natural 210Po (up to 10,000 Bq/m3), 226Ra, and 222Rn isotopes in groundwater. This study aims to provide background data on 226Ra and its daughter radionuclides in the typical agricultural-industrial Dongshan Bay (DSB) before the construction of Zhangzhou Nuclear Power Plant (Zhangzhou NPP). The measurement results indicate that no abnormally high activities of 210Po and 210Pb were detected in the investigated wells. Strong positive correlations between 210Pb and 210Po, as well as between 222Rn and 210Pb activities, suggest that the origins of 210Pb and 210Po in groundwater are strongly influenced by the decay of the parent radionuclides 222Rn and 210Pb, respectively. In the DSB coastal zone groundwater, significant deficiencies of 210Po relative to 210Pb and 210Pb relative to 222Rn were observed, providing further evidence that 210Po and 210Pb are also effectively scavenged due to their geochemical properties (specifically particle affinity) within the groundwater-aquifer system. A systematic comparison among all relevant water bodies in the DSB revealed that the activity concentrations of 210Pb and 210Po in groundwater were the highest, except for rainwater. Based on the evaluation of 210Pb sources, the results imply that submarine groundwater discharge (SGD) is an important pathway for transferring radionuclides (such as 210Pb) from land to the nearshore marine environment, even though the study area has a lower 210Pb background groundwater. By considering all the 210Pb's sources in the DSB, we found low 210Pb background groundwater discharge still needs to be taken into account for small-scale bays. This is because SGD was calculated to be one of the most important 210Pb sources in the bay during observation season. Regardless of whether the system is in a normal state or a nuclear accident emergency state, greater attention should be paid to the groundwater discharge of radionuclides into the ocean.


Subject(s)
Groundwater , Nuclear Family , Humans , Bays/chemistry , Lead , Groundwater/chemistry , Radioisotopes
7.
PLoS One ; 19(1): e0296715, 2024.
Article in English | MEDLINE | ID: mdl-38295030

ABSTRACT

Qatar's rapid industrialization, notably in its capital city Doha, has spurred a surge in land reclamation projects, leading to a constriction of the entrance to Doha Bay. By reducing and deflecting the ocean circulation, land reclamation projects have reduced the effective dispersion of wastewater introduced into the bay and hence degraded the water quality. Here, we assess fluctuations in water residence time across three distinct eras (1980, 2000, and 2020) to gauge the impact of successive land reclamation developments. To do this, we couple the multi-scale ocean model SLIM with a Lagrangian model for water residence time within Doha's coastal area. We consider three different topographies of Doha's shoreline to identify which artificial structures contributed the most to increase water residence time. Our findings reveal that the residual ocean circulation in Doha Bay was predominantly impacted by northern developments post-2000. Between 1980 and 2000, the bay's residence time saw a modest rise, of about one day on average. However, this was followed by a substantial surge, of three to six days on average, between 2000 and 2020, which is mostly attributable to The Pearl mega artificial island development. Certain regions of the bay witnessed a tripling of water residence time. Given the ongoing population expansion along the coast, it is anticipated that the growth of artificial structures and coastal reclamation will persist, thereby exacerbating the accumulation of pollutants in the bay. Our findings suggest that artificial offshore structures can exert far-reaching, non-local impacts on water quality, which need to be properly assessed during the planning stages of such developments.


Subject(s)
Bays , Environmental Pollutants , Qatar , Bays/chemistry , Environmental Monitoring
8.
Mar Pollut Bull ; 198: 115883, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056294

ABSTRACT

Heavy metals play a significant role in marine ecosystems, exerting notable impacts on the environment and human health. In this study, water, sediment, and aquatic organism samples from Jiaozhou Bay were investigated to comprehensively assess the distribution, temporal-spatial variations, and ecological risks of heavy metals. The results indicate that pollution from industrial wastewater discharge contributes to regional differences in the distribution of heavy metals, possibly being a major source of Zn, Cr, Cd, and Hg (r > 0.7, p < 0.05). Biological and physicochemical processes influence the distribution of Zn, Cr, and Pb in the water and sediment. Hg exhibits a polluted state in both the water and sediment, with As and Hg being the two highest-risk heavy metals in water and sediment, respectively. Among the organisms, crustaceans show significantly higher levels of heavy metal content and accumulation compared to mollusks and fish (p < 0.05), and the bioamplification of heavy metals occurs in the sediment-Rapana venosa-Portunus trituberculatus biological pathway. Portunus trituberculatus, Charybdis japonica, Oratosquilla oratoria, and Octopus ocellatus could pose risks to human health, especially for children and vulnerable populations. This study aims to enhance our understanding of the current status of heavy metal pollution in Jiaozhou Bay and to provide a scientific basis and favorable support for the ecological environmental protection and prevention of ecological risks associated with heavy metal pollution in Jiaozhou Bay and other bays in China.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Animals , Child , Humans , Bays/chemistry , Geologic Sediments/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Water , China
9.
Environ Pollut ; 342: 123036, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38030111

ABSTRACT

Microplastics (MPs) as hazardous contaminants has drawn the rapid attention of the general public due to their omnipresence and adverse impacts on ecosystems and human health. Despite this, understanding of MPs contamination levels in the estuarine ecosystems along the Bay of Bengal coast remains very limited. This research focused on the presence, spatial distribution, morpho-chemical characteristics and ecological implications of MPs in water and sediment from five key estuaries (Meghna, Karnaphuli, Matamuhuri, Bakkhali, and Naf rivers) within the Bengal delta. Out of the five estuaries, the Meghna exhibited the least amount of MPs in both surface water (150.00 ± 65.62 items/m3) and sediment (30.56 ± 9.34 items/kg). In contrast, the highest occurrence of MPs was recorded in Karnaphuli river water (350.00 ± 69.22 items/m3) and Matamuhuri river sediment (118.33 ± 26.81 items/kg). ANOVA indicated a statistically significant distinction (p < 0.01) among the examined estuaries. Most identified MPs were fibers and < 0.5 mm in size in both water and sediment samples. Transparent MPs were dominant in both water (42.28%) and sediment (45.22%). Besides violet, red, blue, pink and green colored MPs were also observed. Various polymer types, including PE, PP, PET, PS, Nylon, EVA, and ABS, were detected, with PE being the dominant one. Based on the polymer risk index (PHI), the estuaries were classified as hazard level V, signifying a severe level of MP contamination. However, the potential ecological hazardous index (PHI), potential ecological risk index (RI), and pollution load index (PLI) indicated moderate pollution levels. This study offers initial insights into the pollution caused by MPs in major estuaries of Bengal delta, which policymakers can utilize to implement suitable management strategies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ecosystem , Estuaries , Bays/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers , Water , Risk Assessment
10.
Environ Pollut ; 338: 122687, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797927

ABSTRACT

Bay ecosystem has garnered significant attention due to the severe threat posed by organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs). However, there is a dearth of information regarding the extent of PAHs pollutant risk and its impact on microbial communities and metabolism within this environment. In this study, the distribution, sources, ecological risk, and microbial community and metabolic response of PAHs in Jiaozhou Bay, Aoshan Bay, and Lingshan Bay in Qingdao, China were investigated. The results showed that the average concentration of ∑PAHs ranged from 120 to 614 ng/L across three bays, with Jiaozhou and Aoshan Bay exhibiting a higher risk than Lingshan Bay due to an increased concentration of high-molecular-weight PAHs. Further analysis revealed a negative correlation between dissolved organic carbon concentration and ∑PAHs concentration in water. Metagenomic analysis demonstrated that higher levels of PAHs can lead to decreased microbial diversity, while the abundance of PAHs-degrading bacteria is enhanced. Additionally, the Erythrobacter, Jannaschia and Ruegeria genera were found to have a significant correlation with low-molecular-weight PAH concentrations. In terms of microbial metabolism, higher PAH concentrations were beneficial for carbohydrate metabolic pathway but unfavorable for amino acid metabolic pathways and membrane transport pathways in natural bay environments. These findings provide a foundation for controlling PAHs pollution and offer insights into the impact of PAHs on bacterial communities and metabolism in natural bay environments.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Geologic Sediments/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Bays/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods , Risk Assessment , China
11.
Mar Environ Res ; 191: 106158, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696163

ABSTRACT

Heavy metal contamination has been the focus of many studies owing to its potential risk on the health of coastal ecosystems. The Bohai Bay (BHB) is the second largest bay of Bohai Sea and subjected to serious anthropogenic perturbations. The aim of this study was to evaluate the distribution and pollution status of toxic heavy metals in seawater with two fractions (dissolved and suspended particulate phases) and surface sediments of this coastal system. Therefore, several hydrochemical parameters and concentration of seawater metals and sediment metals were measured at two cruises of 2020 summer and autumn. The spatial distribution and potential ecological risks were examined and their inter-element relationships were analyzed to identify potential geochemical processes. By comparing historical data since 1978, we find declining trends in contents of most trace metals in seawater and sediments, suggesting that recent pollution control in BHB have an effect on diminishing metal pollution. Dissolved metals showed no significant dependence on their particulate phase. The seawater posed a moderate to high level of ecological risk. The hydrochemical factors mainly had a greater impact on dissolved metals during summer, whereas they influenced suspended metals more significantly during autumn. These results provide fundamental information to support environmental quality management and ecological protection in coastal systems.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Geologic Sediments/chemistry , Bays/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Seawater/chemistry , Metals, Heavy/analysis , China , Risk Assessment
12.
Environ Pollut ; 335: 122245, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37487873

ABSTRACT

Mussels were collected from four coastal sites around Port Phillip Bay, Australia in Mar and Apr 2021). Body burdens of Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were measured and the possible sources of toxicants discussed. In addition, a gas chromatography-mass spectrometry (GC-MS) based untargeted metabolomics analysis was performed using the mantle tissues of mussels. Correlations between the results of contaminant body burdens and metabolic variations were investigated. The results demonstrated that high accumulations of low-molecular-weight PAHs were found in mussels. High body burdens of PCBs and OCPs were only found at mussels from the site close to the river mouth. Some of the metabolic pathways were correlated with the accumulation of PAHs. No correlations were found between PCB and OCP accumulations and metabolic abundances. According to the food and environmental standards of the European Union (EU), the PAH, PCB, and OCP accumulation in mussels in this study are a serious food safety concern.


Subject(s)
Bivalvia , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Animals , Polychlorinated Biphenyls/analysis , Gas Chromatography-Mass Spectrometry , Body Burden , Bays/chemistry , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Bivalvia/metabolism , Seafood/analysis , Metabolomics , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods
13.
Mar Pollut Bull ; 192: 115075, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269701

ABSTRACT

This study identified and quantified microplastics in the Bay of Asunción, Paraguay, and its main tributaries. Surface water samples were sieved in duplicate at six locations using stainless-steel sieves (0.3-4.75 mm range), digested employing the Fenton's reaction (Fe-catalysed H2O2 digestion), and floated using NaCl and NaI. Particles were inspected using a microscope and characterized by IR spectrometry. Microplastics were found in all samples; more abundant (p < 0.05) in water from the bay (13.2 ± 13.4 items·m-3) than from the tributaries (1.0 ± 0.5 items·m-3). Most microplastics were common polymers and their abundance was in the order polypropylene > high-density polyethylene > low-density polyethylene, transparent and white. The results were similar to other regional studies and suggested that their main source was single-use packaging, disposed inadequately due to poor garbage collection.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Water/analysis , Bays/chemistry , Paraguay , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polyethylene/analysis
14.
Mar Environ Res ; 189: 106063, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37385086

ABSTRACT

A large number of aquaculture facilities produced during the farming process are made of plastics. These plastics can be a distinct habitat for bacteria due to their unique materials. Therefore, this paper focuses on plastic aquaculture facilities and investigates the impact of bacterial accumulation on plastic surfaces. In this study, the high-throughput sequencing of 16S rRNA was conducted to investigate bacterial community profiling associated with the pearl culture facilities (cultured net cages and foam buoys) and surrounding water of Liusha Bay. Alpha diversity analysis showed that the richness and diversity indexes of bacterial communities in pearl culture facilities were higher than those in the aquatic environment. The richness and diversity indexes of bacterial communities were different between cultured net cages and foam buoys. Spatially influenced bacterial communities attached to pearl culture facilities varied between aquaculture areas. Thus, plastic has become a habitat for bacteria, floating in the marine environment and providing a favorable living environment for marine microorganisms and specific preferences for different substrate types. The relative abundance of certain functions on the attached bacterial community of the culture facility was high, which suggested that plastics did not only alter community structure but also influenced bacterial function. In addition, we detected small amounts of pathogenic bacteria, such as Vibrio and Bruegeria, in pearl culture facilities and surrounding seawater, suggesting that plastics can act as vectors for potentially pathogenic bacteria that may have an impact on the development of aquaculture. Our understanding of plastic ecology has been enriched by the discovery of the various microbial assemblages that can occur in aquaculture facilities.


Subject(s)
Bays , Plastics , Bays/chemistry , RNA, Ribosomal, 16S , Seawater/chemistry , Aquaculture , Bacteria , China
15.
Sci Total Environ ; 876: 162732, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36906020

ABSTRACT

Domoic acid (DA), a natural marine phytotoxin produced by toxigenic algae, is harmful to fishery organisms and the health of seafood consumers. In this study, we performed a whole-sea area investigation of DA in seawater, suspended particulate matter (SPM), and phytoplankton of the Bohai and Northern Yellow seas to clarify the occurrence, phase partitioning, spatial distribution, potential sources, and environmental influencing factors of DA in the aquatic environment. DA in different environmental media was identified using liquid chromatography-high resolution mass spectrometry and liquid chromatography-tandem mass spectrometry. DA was found to be predominantly in a dissolved phase (99.84 %) in seawater with only 0.16 % in SPM. Dissolved DA (dDA) was widely detected in nearshore and offshore areas of the Bohai Sea, Northern Yellow Sea, and Laizhou Bay with concentrations ranging from < limits of detection (LOD) to 25.21 ng/L (mean: 7.74 ng/L), < LOD to 34.90 ng/L (mean: 16.91 ng/L), and 1.74 ng/L to 38.20 ng/L (mean: 21.28 ng/L), respectively. dDA levels were relatively lower in the northern part than in the southern part of the study area. In particular, the dDA levels in the nearshore areas of Laizhou Bay were significantly higher than in other sea areas. This may be due to seawater temperature and nutrient levels exerting a crucial impact on the distribution of DA-producing marine algae in Laizhou Bay during early spring. Pseudo-nitzschia pungens may be the main source of DA in the study areas. Overall, DA was prevalent in the Bohai and Northern Yellow seas, especially in the nearshore aquaculture zone. Routine monitoring of DA in the mariculture zones of the northern seas and bays of China should be performed to warn shellfish farmers and prevent contamination.


Subject(s)
Marine Toxins , Neurotoxins , Marine Toxins/analysis , Prevalence , Seawater/chemistry , Bays/chemistry , China , Environmental Monitoring/methods , Oceans and Seas
16.
Environ Pollut ; 322: 121145, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36702431

ABSTRACT

Vanadium is a component of different natural and industrial products and a widely used metal, which, nonetheless, has only garnered attention in recent years owing to its potential risks. Six sampling trips were conducted over different seasons and years, collecting 108 samples from rivers and 232 from the bays and analyzed using high-precision inductively coupled plasma mass spectrometry. This study investigated the sources, spatiotemporal characteristics, and risks of vanadium in the aquatic ecosystems of two typical bays of the Northwest Pacific that have strong links with vanadium-related industries. Likewise, the health and ecological risks were assessed using probabilistic and deterministic approaches. Overall, vanadium concentrations were higher in Jiaozhou Bay (JZB: 0.41-52.7 µg L-1) than in Laizhou Bay (LZB: 0.39-17.27 µg L-1), with concentrations higher than the majority of the worldwide studies. Vanadium-realted industries significantly impacted (p < 0.05) the metal concentrations in the rivers with 54.22% (40.73-150%) and 54.45% (27.66%-68.87%) greater concentrations in JZB and LZB rivers. In addition, vanadium exhibited significant seasonal variation, and higher values were quantified during the monsoon period at LZB owing to the greater catchment area. Impacted by smaller freshwater inputs, the post-monsoon period had substantial impacts on JZB, and vanadium in the rivers and bays was significantly higher during the winter. Despite some concentrations being higher than that indicated in the drinking water guidelines established by China, vanadium presents low to null risks to the population as per both approaches. Last, species with limited resilience are likely to face medium to high risks, with an incidence of 65-93% using the probabilistic method and 52-97% using the deterministic assessment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Ecosystem , Vanadium/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fresh Water , Rivers/chemistry , Metals, Heavy/analysis , Bays/chemistry , China , Risk Assessment
17.
Environ Pollut ; 316(Pt 1): 120502, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283471

ABSTRACT

Antibiotics have been detected in aquatic environment around the world. Understanding internal concentrations of antibiotics in organisms could further improve risk governance. In this study, we investigated the occurrence of seven sulfonamides, four tetracyclines, five fluoroquinolones, and five macrolides antibiotics in six fish, four crustaceans, and five mollusks species collected from Qinzhou Bay, an important part of the Beibu Gulf in the South China Sea in 2018. 19 of all the 21 target antibiotics were detectable in biota. The total concentrations of the antibiotics ranged from 15.2 to 182 ng/g dry weight in all marine organisms, with sulfonamides and macrolides being the most abundant antibiotics. Mollusks accumulated more antibiotics than fish and crustaceans, implying the species-specific bioaccumulation of antibiotics. The pH dependent partition coefficients of antibiotics exhibited significantly positive correlation with their concentrations in organisms. The ecological risk assessment suggested that marine species in Qinzhou Bay were threatened by azithromycin and norfloxacin. The annual mass loading of antibiotics from Qinzhou Bay to the coastal land area for human ingestion via marine fishery catches was 4.02 kg, with mollusks being the predominant migration contributor. The estimated daily intakes of erythromycin indicated that consumption of seafood from Qinzhou Bay posed considerable risks to children (2-5 years old). The results in this study provide important insights for antibiotics pollution assessment and risk management.


Subject(s)
Bays , Water Pollutants, Chemical , Animals , Child , Humans , Child, Preschool , Bays/chemistry , Environmental Monitoring/methods , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/analysis , Fishes , Macrolides/analysis , Crustacea , China , Sulfonamides/analysis , Risk Assessment
18.
Sci Total Environ ; 861: 160562, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36455729

ABSTRACT

Land-based transport from nearshore areas is a key pathway of microplastic (MP) pollution in the oceans. Therefore, transport, fate, and intervention on MPs necessitate an investigation of MP contamination in coastal regions. Here, MP pollution in the surface waters of Xiamen Bay and Jiulong River estuary was evaluated in 2021 after the outbreak of COVID-19. The abundance of MPs in Xiamen Bay ranged from 0.20 to 5.79 items m-3 with an average of 1.03 items m-3, whereas that in the Jiulong River estuary spanned from 0.55 to 2.11 items m-3 with a mean of 1.30 items m-3. A yearly decreasing trend in the abundance of MPs in surface waters in both regions was observed. The particle sizes of MPs were concentrated in the range of 2.50-5.00 mm, and the colors were mainly white, transparent, and green. The micro-Raman spectroscopic results showed that MP polymer types were predominantly polyethylene, polypropylene, and polystyrene. A lower abundance of MPs in Xiamen Bay with no obvious pattern was observed, while that in the Jiulong River estuary showed a wavelike distribution from upstream to downstream. Ecological risk assessment of MP pollution in surface waters of two regions was performed using the pollution load index (PLI), giving the risk level in descending order: wastewater discharge area > aquaculture area > sloughs > estuary mouth > estuarine rivers > shipping lane. The average risk level of Xiamen Bay (I) was lower than that in Jiulong River estuary (II). The MP pollution in the Jiulong River estuary appeared heavier than that in Xiamen Bay, which may be due to the combined effects of COVID-19 and marine governance. This study provided insights into the prevention and management of MP pollution in nearshore semi-enclosed bays.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Bays/chemistry , Estuaries , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , COVID-19/epidemiology , Disease Outbreaks , China
19.
Sci Total Environ ; 861: 160658, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36473656

ABSTRACT

Due to the widespread use of organophosphate esters (OPEs), the occurrence and trophic transfer of OPEs have attracted attentions in ecosystems. However, as the final sink for these chemicals, the bioaccumulations and trophodynamics of OPEs in marine ecosystems are still not clear. In this study, seawater, sediment and marine organisms collected from Bohai Bay (BHB), Laizhou Bay (LZB), and Liaodong Bay (LDB) in Bohai Sea (BS), China were analyzed to investigate the occurrence, bioaccumulation and trophic transfer of typical OPEs. Total concentration of OPEs (∑9 OPEs) in surface water in LZB (255.8 ± 36.44 ng/L) and BHB (209.6 ± 35.61 ng/L) was higher than that in LDB (170.0 ± 63.73 ng/L). Marine organisms in LZB accumulated the highest concentrations of OPEs among the 3 bays (∑10OPEs, 70.56 ± 61.36 ng/g ww). Average bioaccumulation factor (BAF) of OPEs in marine organism in BHB, LZB, and LDB was ranged from -2.48 to 0.16, from -2.96 to 1.78, and from -2.59 to 0.59. We also found that trophic magnification factors (TMF) are generally <1, which suggested trophic dilutions of OPEs in BS, China. Nevertheless, the relatively high OPEs levels in BS still may bring potential risks to ecosystem and human health.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Environmental Monitoring , Bays/chemistry , Fishes , Bioaccumulation , Water Pollutants, Chemical/analysis , Aquatic Organisms , China , Organophosphates , Esters
20.
Mar Pollut Bull ; 186: 114482, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36565579

ABSTRACT

Heavy metal pollution associated with human activity is of big concern in tropical bays. Microorganisms may be highly sensitive to heavy metals. Nonetheless, little is known about effects of heavy metals on microbial structure in tropical bay sediments. In this study, 16S rRNA gene sequencing and potential ecological risk index analysis were used to analyze the relationships between nine metals (arsenic, lead, cadmium, cobalt, chromium, copper, zinc, manganese, and nickel) and bacterial communities in the sediments of Bamen Bay, China. Our results showed that Bamen Bay was under a considerable ecological risk and cadmium had the highest monomial potential ecological risk. In addition, individual metal contamination correlated with bacterial community composition but not with bacterial α-diversity. Arsenic was the metal influencing bacterial community structure the most. Our findings provide a novel insight into the monitoring and remediation of heavy metal pollution in tropical bays.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Humans , Cadmium/analysis , Bays/chemistry , Arsenic/analysis , RNA, Ribosomal, 16S , Geologic Sediments/chemistry , Metals, Heavy/analysis , Risk Assessment , Bacteria , China , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...