Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Sci Rep ; 14(1): 10079, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698037

ABSTRACT

Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.


Subject(s)
Beekeeping , Seasons , Animals , Bees/physiology , Latin America
2.
PLoS One ; 19(5): e0302907, 2024.
Article in English | MEDLINE | ID: mdl-38753826

ABSTRACT

Honey bees (Apis mellifera) are exposed to multiple stressors such as pesticides, lack of forage, and diseases. It is therefore a long-standing aim to develop robust and meaningful indicators of bee vitality to assist beekeepers While established indicators often focus on expected colony winter mortality based on adult bee abundance and honey reserves at the beginning of the winter, it would be useful to have indicators that allow detection of stress effects earlier in the year to allow for adaptive management. We used the established honey bee simulation model BEEHAVE to explore the potential of different indicators such as population size, number of capped brood cells, flight activity, abundance of Varroa mites, honey stores and a brood-bee ratio. We implemented two types of stressors in our simulations: 1) parasite pressure, i.e. sub-optimal Varroa treatment by the beekeeper (hereafter referred as Biotic stress) and 2) temporal forage gaps in spring and autumn (hereafter referred as Environmental stress). Neither stressor type could be detected by bee abundance or honey reserves at the end of the first year. However, all response variables used in this study did reveal early warning signals during the course of the year. The most reliable and useful measures seem to be related to brood and the abundance of Varroa mites at the end of the year. However, while in the model we have full access to time series of variables from stressed and unstressed colonies, knowledge of these variables in the field is challenging. We discuss how our findings can nevertheless be used to develop practical early warning indicators. As a next step in the interactive development of such indicators we suggest empirical studies on the importance of the number of capped brood cells at certain times of the year on bee population vitality.


Subject(s)
Varroidae , Bees/parasitology , Bees/physiology , Animals , Seasons , Honey , Computer Simulation , Colony Collapse , Population Density , Stress, Physiological , Beekeeping
3.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805651

ABSTRACT

Honey bees are important organisms for research in many fields, including physiology, behavior, and ecology. Honey bee colonies are relatively easy and affordable to procure, manage, and replace. However, some difficulties still exist in honey bee research, specifically that honey bee colonies have a distinct seasonality, especially in temperate regions. Honey bee colonies transition from a large society in which workers have a strict temporal division of labor in the summer, to a group of behaviorally flexible workers who manage the colony over winter. Furthermore, opening colonies or collecting bees when they are outside has the potential to harm the colony because of the disruption in thermoregulation. Here, we present a simple and affordable indoor management method utilizing a mylar tent and controlled environmental conditions that allows bees to freely fly without access to outdoor space. This technique permits research labs to successfully keep several colonies persistently active during winter at higher latitudes. Having an extended research period is particularly important for training students, allowing preliminary experiments to be performed, and developing methods. However, we find distinct behavioral differences in honey bees managed in this situation. Specifically learning and thermoregulatory behaviors were diminished in the bees managed in the tent. Therefore, we recommend caution in utilizing these winter bees for full experiments until more is known. Overall, this method expands the research potential on honey bees, and calls attention to the additional research that is needed to understand how indoor management might affect honey bees.


Subject(s)
Seasons , Bees/physiology , Animals , Beekeeping/methods , Behavior, Animal , Body Temperature Regulation , Housing, Animal
4.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805649

ABSTRACT

Varroa destructor Oud (Acari: Varroidae) is a harmful ectoparasite of Apis mellifera L. honey bees causing widespread colony losses in Europe and North America. To control populations of these mites, beekeepers have an arsenal of different treatments, including both chemical and nonchemical options. However, nonchemical treatments can be labor intensive, and Varroa has gained resistance to some conventional pesticides, and the use of other chemical treatments is restricted temporally (e.g., cannot be applied during periods of honey production). Thus, beekeepers require additional treatment options for controlling mite populations. The compound 1-allyloxy-4-propoxybenzene (3c{3,6}) is a diether previously shown to be a strong feeding deterrent against Lepidopteran larvae and a repellent against mosquitoes and showed promise as a novel acaricide from laboratory and early field trials. Here we test the effect of the compound, applied at 8 g/brood box on wooden release devices, on honey bees and Varroa in field honey bee colonies located in Maryland, USA, and using a thymol-based commercial product as a positive control. 3c{3,6} had minimal effect on honey bee colonies, but more tests are needed to determine whether it affected egg production by queens. Against Varroa3c{3,6} had an estimated efficacy of 78.5%, while the positive control thymol product showed an efficacy of 91.3%. 3c{3,6} is still in the development stage, and the dose or application method needs to be revisited.


Subject(s)
Acaricides , Varroidae , Animals , Bees/parasitology , Varroidae/drug effects , Maryland , Beekeeping/methods
5.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805657

ABSTRACT

Despite the use of various integrated pest management strategies to control the honey bee mite, Varroa destructor, varroosis remains the most important threat to honey bee colony health in many countries. In Canada, ineffective varroa control is linked to high winter colony losses and new treatment options, such as a summer treatment, are greatly needed. In this study, a total of 135 colonies located in 6 apiaries were submitted to one of these 3 varroa treatment strategies: (i) an Apivar® fall treatment followed by an oxalic acid (OA) treatment by dripping method; (ii) same as in (i) with a summer treatment consisting of formic acid (Formic Pro™); and (iii) same as in (i) with a summer treatment consisting of slow-release OA/glycerin pads (total of 27 g of OA/colony). Treatment efficacy and their effects on colony performance, mortality, varroa population, and the abundance of 6 viruses (acute bee paralysis virus [ABPV], black queen cell virus [BQCV], deformed wing virus variant A [DWV-A], deformed wing virus variant B [DWV-B], Israeli acute paralysis virus [IAPV], and Kashmir bee virus [KBV]) were assessed. We show that a strategy with a Formic Pro summer treatment tended to reduce the varroa infestation rate to below the economic fall threshold of 15 daily varroa drop, which reduced colony mortality significantly but did not reduce the prevalence or viral load of the 6 tested viruses at the colony level. A strategy with glycerin/OA pads reduced hive weight gain and the varroa infestation rate, but not below the fall threshold. A high prevalence of DWV-B was measured in all groups, which could be related to colony mortality.


Subject(s)
Beekeeping , Seasons , Varroidae , Viral Load , Animals , Varroidae/physiology , Bees/parasitology , Bees/virology , Beekeeping/methods , Acaricides , Formates/pharmacology , Canada
6.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805650

ABSTRACT

Honey bee parasites remain a critical challenge to management and conservation. Because managed honey bees are maintained in colonies kept in apiaries across landscapes, the study of honey bee parasites allows the investigation of spatial principles in parasite ecology and evolution. We used a controlled field experiment to study the relationship between population growth rate and virulence (colony survival) of the parasite Varroa destructor (Anderson and Trueman). We used a nested design of 10 patches (apiaries) of 14 colonies to examine the spatial scale at which Varroa population growth matters for colony survival. We tracked Varroa population size and colony survival across a full year and found that Varroa populations that grow faster in their host colonies during the spring and summer led to larger Varroa populations across the whole apiary (patch) and higher rates of neighboring colony loss. Crucially, this increased colony loss risk manifested at the patch scale, with mortality risk being related to spatial adjacency to colonies with fast-growing Varroa strains rather than with Varroa growth rate in the colony itself. Thus, within-colony population growth predicts whole-apiary virulence, demonstrating the need to consider multiple scales when investigating parasite growth-virulence relationships.


Subject(s)
Host-Parasite Interactions , Population Dynamics , Varroidae , Animals , Bees/parasitology , Varroidae/physiology , Virulence , Beekeeping
7.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805654

ABSTRACT

Managed honey bee (Apis mellifera L.) colonies in North America and Europe have experienced high losses in recent years, which have been linked to weather conditions, lack of quality forage, and high parasite loads, particularly the obligate brood parasite, Varroa destructor. These factors may interact at various scales to have compounding effects on honey bee health, but few studies have been able to simultaneously investigate the effects of weather conditions, landscape factors, and management of parasites. We analyzed a dataset of 3,210 survey responses from beekeepers in Pennsylvania from 2017 to 2022 and combined these with remotely sensed weather variables and novel datasets about seasonal forage availability into a Random Forest model to investigate drivers of winter loss. We found that beekeepers who used treatment against Varroa had higher colony survival than those who did not treat. Moreover, beekeepers who used multiple types of Varroa treatment had higher colony survival rates than those who used 1 type of treatment. Our models found weather conditions are strongly associated with survival, but multiple-treatment type colonies had higher survival across a broader range of climate conditions. These findings suggest that the integrated pest management approach of combining treatment types can potentially buffer managed honey bee colonies from adverse weather conditions.


Subject(s)
Beekeeping , Seasons , Varroidae , Weather , Animals , Bees/parasitology , Varroidae/physiology , Beekeeping/methods , Pennsylvania , Pest Control/methods , Colony Collapse
8.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805656

ABSTRACT

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Subject(s)
Glycine max , Varroidae , Zea mays , Animals , Bees/parasitology , Bees/drug effects , Iowa , Varroidae/physiology , Beekeeping , Pesticides/toxicity , Longitudinal Studies , Pollen
9.
Curr Biol ; 34(10): R498-R501, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38772337

ABSTRACT

A new study showcases the usefulness of systems theory and network analyses for understanding how dozens of stressors can act concomitantly to affect managed honey bee health. Interestingly, the most influential stressors are not those currently being addressed by beekeepers.


Subject(s)
Beekeeping , Stress, Physiological , Bees/physiology , Animals , Beekeeping/methods , Systems Theory
10.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805646

ABSTRACT

Honey bees are the most important managed insect pollinators in the US and Canadian crop systems. However, the annual mortality of colonies in the past 15 years has been consistently higher than historical records. Because they are eusocial generalist pollinators and amenable to management, honey bees provide a unique opportunity to investigate a wide range of questions at molecular, organismal, and ecological scales. Here, the American Association of Professional Apiculturists (AAPA) and the Canadian Association of Professional Apiculturists (CAPA) created 2 collections of articles featuring investigations on micro and macro aspects of honey bee health, sociobiology, and management showcasing new applied research from diverse groups studying honey bees (Apis mellifera) in the United States and Canada. Research presented in this special issue includes examinations of abiotic and biotic stressors of honey bees, and evaluations and introductions of various stress mitigation measures that may be valuable to both scientists and the beekeeping community. These investigations from throughout the United States and Canada showcase the wide breadth of current work done and point out areas that need further research.


Subject(s)
Beekeeping , Bees/physiology , Animals , Canada , United States , Stress, Physiological , Pollination
11.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805652

ABSTRACT

The purpose of this research was to determine how common chemical treatments influence Varroa destructor (Anderson and Trueman) population resurgence rates (defined as time posttreatment for mite populations to reach 3 mites/100 adult bees) in managed honey bee (Apis mellifera L.) colonies seasonally. We conducted 2 experiments that followed the same basic protocol to address this purpose. We established 6 treatment groups in Experiment 1 in the fall of 2014: untreated control, Apivar, Apistan, CheckMite+, ApiLifeVar, and Mite Away II applied to 10 colonies per treatment. In Experiment 2, we applied 8 chemical treatments to each of 4 seasonal (spring, summer, fall, and winter) cohorts of honey bee colonies to determine how mite populations are influenced by the treatments. The treatments/formulations tested were Apivar, Apistan, Apiguard, MAQS, CheckMite+, oxalic acid (dribble), oxalic acid (shop towels), and amitraz (shop towels soaked in Bovitraz). In Experiment 1, Apivar and Mite Away II were able to delay V. destructor resurgence for 2 and 6 months, respectively. In Experiment 2, Apiguard, MAQS, oxalic acid (dribble), and Bovitraz treatments were effective at delaying V. destructor resurgence for at least 2 months during winter and spring. Only the Bovitraz and MAQS treatments were effective at controlling V. destructor in the summer and fall. Of the 2 amitraz-based treatments, the off-label Bovitraz treatment was the only treatment to reduce V. destructor populations in every season. The data gathered through this study allow for the refinement of treatment recommendations for V. destructor, especially regarding the seasonal efficacy of each miticide and the temporal efficacy posttreatment.


Subject(s)
Acaricides , Seasons , Varroidae , Animals , Varroidae/drug effects , Bees/parasitology , Beekeeping
12.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805647

ABSTRACT

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Subject(s)
Acaricides , Thymol , Toluidines , Varroidae , Animals , Toluidines/pharmacology , Bees/parasitology , Varroidae/drug effects , Varroidae/physiology , Thymol/pharmacology , Beekeeping/methods
13.
PLoS One ; 19(5): e0304259, 2024.
Article in English | MEDLINE | ID: mdl-38809915

ABSTRACT

In Ethiopia, improved hive technology dissemination was started before five-decades. However, the adoption of improved beekeeping technology is still very low. This study was conducted with the main objectives to evaluating improved beekeeping adoption level and honey yields of different hives and identification of major honey bee plants and flora calendar in the Gedeo zone, South Ethiopia. Three districts were selected purposively based on beekeeping potential and the number of improved hives own by beekeepers. The data was collected from 180 respondents using cross-sectional survey. The data was analyzed by using descriptive statistics such as mean, frequency and percentage and ANOVA. The result shown that the compositions of disseminated hives in the entire sampled respondents were 286, 476, 121 and 1494 Zander hive, Kenyan top bar hive (KTBH), Mud/Ethio-Ribrab hive (ERH) and Traditional hives respectively. Traditional beekeeping was the dominant system with 63% and intermediate followed by 25%, while modern beekeeping was only 12%. Based on overall mean honey yield, there was no significant difference (P = 0.244) between Zander and KTBH. However, the average honey yield of these improved hives were significantly (P<0.05) higher than Mud/ERH and Traditional hives. Gedeo zone had rich floral resource and diverse floral calendar. Hygenia abyssinica, Bidens ghedoensis, Erythrinia abyssinica, Eucalyptus species, Cordia africana, Coffee arabica, Vernonia species, Susbania susban and Persea americana were major honey bee flora in Gedeo zone. February-March was major honey harvesting season while May-July and October-December respectively were minor honey harvesting periods. Nevertheless, the majority of beekeepers have been practicing honey harvesting once a year from all hives due to lack of awareness and practical skills. Therefore, we recommend that the local government should focus on educating beekeepers to enable them utilizing exhaustively the opportunities of multi-floral season and improved hive technology to maximize honey yield in the area.


Subject(s)
Beekeeping , Honey , Bees/physiology , Beekeeping/methods , Ethiopia , Animals , Cross-Sectional Studies , Flowers , Seasons
14.
Arch Microbiol ; 206(5): 205, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573383

ABSTRACT

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.


Subject(s)
Beekeeping , Probiotics , Bees , Animals , Agriculture , Anti-Bacterial Agents , Dysbiosis
15.
Ann Sci ; 81(3): 285-308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561352

ABSTRACT

During the English Civil War and subsequent Restoration, beekeeping provided a ready set of moral examples for those seeking answers about the 'natural' structure of society. The practice itself also underwent a number of substantial changes, moving from a traditional craft practice to a more knowledge-focused, technologically complex one. The advent of glass-windowed hives in the latter half of the sixteenth century allowed intellectuals from across the political spectrum to directly observe bees as a way of gathering knowledge about how to understand the divine plan and, with that understanding, improve human society.


Subject(s)
Beekeeping , Bees , History, 17th Century , England , Beekeeping/history , Animals , Humans , Courage
16.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38636513

ABSTRACT

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Subject(s)
Crops, Agricultural , Pollination , Bees/physiology , Bees/parasitology , Animals , Varroidae/physiology , Canada , Stress, Physiological , Beekeeping/methods
17.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485887

ABSTRACT

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Subject(s)
Beekeeping , Mite Infestations , Varroidae , Animals , Bees/parasitology , Bees/physiology , Varroidae/physiology , Costa Rica , Mite Infestations/veterinary , Mite Infestations/parasitology , Honey/analysis , Nesting Behavior
18.
Exp Appl Acarol ; 92(4): 795-808, 2024 May.
Article in English | MEDLINE | ID: mdl-38478141

ABSTRACT

Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.


Subject(s)
Larva , Varroidae , Animals , Varroidae/physiology , Bees/parasitology , Larva/growth & development , Larva/physiology , Beekeeping/methods , Reproduction , Temperature
19.
Glob Chang Biol ; 30(3): e17219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450832

ABSTRACT

The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.


La abeja occidental Apis mellifera es una especie manejada que proporciona diversos productos de la colmena y servicios de polinización, los cuales son cruciales para plantas silvestres y cultivos en todo el mundo. En distintos continentes se han registrado altas tasas de mortalidad, las cuales son atribuidas a diversos factores, como el uso de pesticidas, plagas, enfermedades y falta de recursos florales. Además, el cambio climático ha sido identificado como un potencial factor que afecta negativamente a los polinizadores, pero aún no está claro cómo podría afectar a las poblaciones de abejas melíferas. En este contexto, realizamos una revisión sistemática de la literatura disponible para sintetizar los efectos del cambio climático en las abejas melíferas y las actividades apícolas. En total, se identificaron 90 artículos que proporcionaron información sobre los posibles efectos (negativos, neutros y positivos) en las abejas melíferas y la apicultura. El interés por el impacto del cambio climático en las abejas melíferas ha aumentado en la última década, con estudios centrados principalmente en individuos de abejas melíferas, utilizando enfoques empíricos y experimentales y realizados a escalas espaciales (<10 km) y temporales (<5 años) cortas. Además, los análisis ambientales fueron basaron principalmente en datos a corto plazo (meteorológicos) y se concentraron sólo en algunos países. Variables ambientales como la temperatura, las precipitaciones y el viento fueron ampliamente estudiadas y tuvieron efectos negativos generalizados sobre distintos aspectos biológicos y ecológicos de las abejas melíferas. Además, las reservas alimenticias, las interacciones planta-polinizador, la mortalidad, la expresión génica y el metabolismo se vieron afectados negativamente. Entre los vacios de conocimiento cabe mencionar la falta de estudios a nivel de colmenar y apicultor, la escasez de estudios de predicción y percepción, la escasa representación de las grandes escalas espaciales y a mediano plazo, el déficit de análisis climáticos y la escasa comprensión de los impactos potenciales de plagas y enfermedades. Por último, las repercusiones del cambio climático en la apicultura mundial siguen siendo un tema emergente, que debe estudiarse en los distintos países. Esto se debe principalmente a sus diversos efectos sobre las abejas melíferas y a la necesidad potencial de aplicar medidas de adaptación para mantener esta actividad crucial en escenarios medioambientales complejos.


Subject(s)
Beekeeping , Pesticides , Animals , Bees , Climate Change , Food , Pollination
20.
Sci Rep ; 14(1): 5410, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528007

ABSTRACT

Honey bees and other pollinators are critical for food production and nutritional security but face multiple survival challenges. The effect of climate change on honey bee colony losses is only recently being explored. While correlations between higher winter temperatures and greater colony losses have been noted, the impacts of warmer autumn and winter temperatures on colony population dynamics and age structure as an underlying cause of reduced colony survival have not been examined. Focusing on the Pacific Northwest US, our objectives were to (a) quantify the effect of warmer autumns and winters on honey bee foraging activity, the age structure of the overwintering cluster, and spring colony losses, and (b) evaluate indoor cold storage as a management strategy to mitigate the negative impacts of climate change. We perform simulations using the VARROAPOP population dynamics model driven by future climate projections to address these objectives. Results indicate that expanding geographic areas will have warmer autumns and winters extending honey bee flight times. Our simulations support the hypothesis that late-season flight alters the overwintering colony age structure, skews the population towards older bees, and leads to greater risks of colony failure in the spring. Management intervention by moving colonies to cold storage facilities for overwintering has the potential to reduce honey bee colony losses. However, critical gaps remain in how to optimize winter management strategies to improve the survival of overwintering colonies in different locations and conditions. It is imperative that we bridge the gaps to sustain honey bees and the beekeeping industry and ensure food and nutritional security.


Subject(s)
Beekeeping , Pollination , Bees , Animals , Seasons , Beekeeping/methods , Food , Northwestern United States
SELECTION OF CITATIONS
SEARCH DETAIL
...