Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.966
Filter
1.
BMC Vet Res ; 20(1): 238, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831350

ABSTRACT

Neutering dogs is a widespread method and is carried out for various behavioural and husbandry reasons. This study's main objective is to investigate the behavioural correlations between neutering and the breed of male dogs. In order to possibly find breed-dependent differences in the behaviour of intact and castrated dogs, a differentiation between two clades - the "Huskies"(chow chow, shar pei, akita/shiba inu, alaskan malamute, siberian/alaskan husky) and the "Bulldogs" (german boxer, english/french bulldog, old english mastiff, boston terrier, english bull terrier, staffordshire bull terrier, american staffordshire terrier), based on Parker et al. [1], was made.Using an online questionnaire,, 31 neutered and 37 intact male dogs from the clade "Huskies" and 30 neutered and 38 intact male dogs from the clade "Bulldogs", participated in the study (N = 136).The survey included detailed questions on the dogs' personality and any associated issues as well as a behavioural anamnesis. Further questions relating to four of the "big five" personality dimensions based on the "Budapest questionnaire" by Turcsán et al. from 2011 [2] were also added.The results show, that neutered males from both breed clades more frequently displayed aggression toward humans than intact males (multinomial logistic regression, p = 0.002). When it came to aggression towards other dogs, it was the "Huskies" that differed significantly from the "Bulldogs"(multinomial logistic regression, p = 0.04) with being more aggressive. There were also significant differences in stress-related behaviour depending on castration status and breed (multinomial logistic regression, p < 0.001; Cramer's V = 0.33) and only the castration status had an impact on the significance (multinomial logistic regression, p < 0.001). The analysis also revealed significance for stress-indicating behaviour with dependence on neutering status (multinomial logistic regression, p < 0.001) and showed that stress as well as uncertainty are significantly more common in neutered dogs depending on breed and neutering status (multinomial logistic regression, p < 0.001; Cramer's V = 0.42), in that only neutered "Bulldogs" were stressed, but more "Huskies" overall.According to the Budapest questionnaire data, the "Bulldog" clade had considerably greater extraversion scores overall (ordinal regression, p < 0.001) than the "Huskies".Our findings highlight the risks and potential negative effects of neutering. Gonadectomy in no way substitutes for the dog receiving the necessary socialization, training, or bonding. Although in some circumstances it might have a favourable impact on the dog's behaviour, it should not be seen as a panacea for unwanted behaviour. Given that not all behaviours are influenced by sex hormones, every castration decision must be weighed up individually.


Subject(s)
Behavior, Animal , Animals , Dogs , Male , Behavior, Animal/physiology , Orchiectomy/veterinary , Surveys and Questionnaires , Aggression
2.
Elife ; 122024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832493

ABSTRACT

Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.


Subject(s)
Behavior, Animal , Biological Evolution , Characidae , Smell , Animals , Smell/physiology , Characidae/physiology , Behavior, Animal/physiology , Odorants , Personality/physiology , Swimming/physiology , Olfactory Perception/physiology , Caves , Larva/physiology
3.
Reprod Domest Anim ; 59(5): e14572, 2024 May.
Article in English | MEDLINE | ID: mdl-38698636

ABSTRACT

This study was conducted to assess the disparities in camel activities such as eating, drinking, sitting, standing, and sleeping between primiparous and multiparous females before parturition using computer vision. Also, any extraordinary behaviours during the final 2 h before parturition and the necessary manual interventions were meticulously recorded. Five primiparous (age: 4.5-7 years) and 7 multiparous (age: 8-14 years; parity: 2.1 ± 1.5) dromedary camels, were included in this study. Pre-partum females were housed double in a parturition pen provided with two Reolink RLC-810A cameras and the data were collected and recorded for each female. Two primiparous and 1 multiparous female required assistance in pulling the calf from both forelimbs to complete their parturition (27.3%). The drinking and sleeping activities were similar in primiparous and multiparous females during the recorded 32 h leading up to calving. Only eating activity exhibited a longer period in primiparous females compared to multiparous females specifically during the 12-h before calving. Sitting activity was longer, and standing activity was shorter in multiparous than in primiparous females during the 24, 12, and 6 h before calving. All parturient camels, whether primiparous or multiparous, exhibited signs of distress. Some extraordinary behaviours were observed, such as two multiparous females attempting to deter their primiparous counterparts from eating. Additionally, three females displayed a distinctive standing position on their knees while their hind limbs were in a complete standing position for 3-5 min before transitioning to sitting or standing positions. Furthermore, one primiparous female stood while the head and forelimbs of the calf partially protruded from her vulva. In conclusion, the application of computer vision and deep learning technology proves valuable for observing prepartum camels under farm conditions, potentially reducing economic losses stemming from delayed human intervention in dystocia cases.


Subject(s)
Behavior, Animal , Camelus , Parity , Animals , Female , Camelus/physiology , Pregnancy , Behavior, Animal/physiology , Parturition/physiology , Eating/physiology
4.
PLoS One ; 19(5): e0300227, 2024.
Article in English | MEDLINE | ID: mdl-38696419

ABSTRACT

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Subject(s)
Aging , Zebrafish , Animals , Zebrafish/physiology , Female , Male , Aging/physiology , Behavior, Animal/physiology , Locomotion/physiology , Motor Activity/physiology , Exploratory Behavior/physiology
5.
Nat Commun ; 15(1): 3702, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697969

ABSTRACT

Hippocampal place cells represent the position of a rodent within an environment. In addition, recent experiments show that the CA1 subfield of a passive observer also represents the position of a conspecific performing a spatial task. However, whether this representation is allocentric, egocentric or mixed is less clear. In this study we investigated the representation of others during free behavior and in a task where female mice learned to follow a conspecific for a reward. We found that most cells represent the position of others relative to self-position (social-vector cells) rather than to the environment, with a prevalence of purely egocentric coding modulated by context and mouse identity. Learning of a pursuit task improved the tuning of social-vector cells, but their number remained invariant. Collectively, our results suggest that the hippocampus flexibly codes the position of others in multiple coordinate systems, albeit favoring the self as a reference point.


Subject(s)
CA1 Region, Hippocampal , Animals , Female , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Mice , Mice, Inbred C57BL , Place Cells/physiology , Reward , Behavior, Animal/physiology
6.
PLoS One ; 19(5): e0302833, 2024.
Article in English | MEDLINE | ID: mdl-38701080

ABSTRACT

Dogs have previously been shown to synchronise their behaviour with their owner and the aim of this study was to test the effect of immediate interactions, breed, and the effects of domestication. The behavioural synchronisation test was conducted in outdoor enclosures and consisted of 30 s where the owner/handler was walking and 30 s of standing still. Three studies were conducted to explore the effect of immediate interaction (study A), the effect of breed group (study B), and the effect of domestication (study C). In study A, a group of twenty companion dogs of various breeds were tested after three different human interaction treatments: Ignore, Pet, and Play. The results showed that dogs adjusted their movement pattern to align with their owner's actions regardless of treatment. Furthermore, exploration, eye contact, and movement were all influenced by the owners moving pattern, and exploration also decreased after the Play treatment. In study B, the synchronisation test was performed after the Ignore treatment on three groups: 24 dogs of ancient dog breeds, 17 solitary hunting dogs, and 20 companion dogs (data from study A). Irrespective of the group, all dogs synchronised their moving behaviour with their owner. In addition, human walking positively influenced eye contact behaviour while simultaneously decreasing exploration behaviour. In study C, a group of six socialised pack-living wolves and six similarly socialised pack-living dogs were tested after the Ignore treatment. Interestingly, these animals did not alter their moving behaviour in response to their handler. In conclusion, dogs living together with humans synchronise with their owner's moving behaviour, while wolves and dogs living in packs do not. Hence, the degree of interspecies behavioural synchronisation may be influenced by the extent to which the dogs are immersed in everyday life with humans.


Subject(s)
Behavior, Animal , Human-Animal Bond , Wolves , Animals , Dogs , Humans , Wolves/physiology , Behavior, Animal/physiology , Male , Female , Pets/psychology , Human-Animal Interaction , Domestication , Breeding
7.
Methods Mol Biol ; 2799: 107-138, 2024.
Article in English | MEDLINE | ID: mdl-38727905

ABSTRACT

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Subject(s)
Maze Learning , Memory, Long-Term , Receptors, N-Methyl-D-Aspartate , Spatial Memory , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Memory, Long-Term/physiology , Maze Learning/physiology , Spatial Memory/physiology , Hippocampus/physiology , Hippocampus/metabolism , Behavior, Animal/physiology , Neuronal Plasticity/physiology
8.
Sci Rep ; 14(1): 10223, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702359

ABSTRACT

Animal activity reflects behavioral decisions that depend upon environmental context. Prior studies typically estimated activity distributions within few areas, which has limited quantitative assessment of activity changes across environmental gradients. We examined relationships between two response variables, activity level (fraction of each day spent active) and pattern (distribution of activity across a diel cycle) of white-tailed deer (Odocoileus virginianus), with four predictors-deer density, anthropogenic development, and food availability from woody twigs and agriculture. We estimated activity levels and patterns with cameras in 48 different 10.36-km2 landscapes across three larger regions. Activity levels increased with greater building density, likely due to heightened anthropogenic disturbance, but did not vary with food availability. In contrast, activity patterns responded to an interaction between twigs and agriculture, consistent with a functional response in habitat use. When agricultural land was limited, greater woody twig density was associated with reduced activity during night and evening. When agricultural land was plentiful, greater woody twig density was associated with more pronounced activity during night and evening. The region with the highest activity level also experienced the most deer-vehicle collisions. We highlight how studies of spatial variation in activity expand ecological insights on context-dependent constraints that affect wildlife behavior.


Subject(s)
Behavior, Animal , Deer , Ecosystem , Deer/physiology , Animals , Behavior, Animal/physiology , Agriculture/methods
9.
PLoS One ; 19(5): e0298657, 2024.
Article in English | MEDLINE | ID: mdl-38713725

ABSTRACT

Zebrafish are an established and widely used animal model, yet there is limited understanding of their welfare needs. Despite an increasing number of studies on zebrafish enrichment, in-tank environmental enrichment remains unpopular among researchers. This is due to perceived concerns over health/hygiene when it comes to introducing enrichment into the tank, although actual evidence for this is sparse. To accommodate this belief, regardless of veracity, we tested the potential benefits of enrichments presented outside the tank. Thus, we investigated the preferences and physiological stress of zebrafish with pictures of pebbles placed underneath the tank. We hypothesized that zebrafish would show a preference for enriched environments and have lower stress levels than barren housed zebrafish. In our first experiment, we housed zebrafish in a standard rack system and recorded their preference for visual access to a pebble picture, with two positive controls: visual access to conspecifics, and group housing. Using a crossover repeated-measures factorial design, we tested if the preference for visual access to pebbles was as strong as the preference for social contact. Zebrafish showed a strong preference for visual access to pebbles, equivalent to that for conspecifics. Then, in a second experiment, tank water cortisol was measured to assess chronic stress levels of zebrafish housed with or without a pebble picture under their tank, with group housing as a positive control. Cortisol levels were significantly reduced in zebrafish housed with pebble pictures, as were cortisol levels in group housed zebrafish. In fact, single housed zebrafish with pebble pictures showed the same cortisol levels as group housed zebrafish without pebble pictures. Thus, the use of an under-tank pebble picture was as beneficial as being group housed, effectively compensating for the stress of single housing. Pebble picture enrichment had an additive effect with group housing, where group housed zebrafish with pebble pictures had the lowest cortisol levels of any treatment group.


Subject(s)
Housing, Animal , Hydrocortisone , Zebrafish , Animals , Zebrafish/physiology , Hydrocortisone/metabolism , Stress, Physiological , Male , Behavior, Animal/physiology , Female , Animal Welfare
10.
Sci Rep ; 14(1): 10491, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714729

ABSTRACT

Dogs (Canis lupus familiaris) are the domestically bred descendant of wolves (Canis lupus). However, selective breeding has profoundly altered facial morphologies of dogs compared to their wolf ancestors. We demonstrate that these morphological differences limit the abilities of dogs to successfully produce the same affective facial expressions as wolves. We decoded facial movements of captive wolves during social interactions involving nine separate affective states. We used linear discriminant analyses to predict affective states based on combinations of facial movements. The resulting confusion matrix demonstrates that specific combinations of facial movements predict nine distinct affective states in wolves; the first assessment of this many affective facial expressions in wolves. However, comparative analyses with kennelled rescue dogs revealed reduced ability to predict affective states. Critically, there was a very low predictive power for specific affective states, with confusion occurring between negative and positive states, such as Friendly and Fear. We show that the varying facial morphologies of dogs (specifically non-wolf-like morphologies) limit their ability to produce the same range of affective facial expressions as wolves. Confusion among positive and negative states could be detrimental to human-dog interactions, although our analyses also suggest dogs likely use vocalisations to compensate for limitations in facial communication.


Subject(s)
Domestication , Emotions , Facial Expression , Wolves , Animals , Wolves/physiology , Dogs , Emotions/physiology , Male , Female , Behavior, Animal/physiology , Humans
11.
PLoS One ; 19(5): e0301270, 2024.
Article in English | MEDLINE | ID: mdl-38722951

ABSTRACT

Mixed-species groups and aggregations are quite common and may provide substantial fitness-related benefits to group members. Individuals may benefit from the overall size of the mixed-species group or from the diversity of species present, or both. Here we exposed mixed-species flocks of songbirds (Carolina chickadees, Poecile carolinensis, tufted titmice, Baeolophus bicolor, and the satellite species attracted to these two species) to three different novel feeder experiments to assess the influence of mixed-species flock size and composition on ability to solve the feeder tasks. We also assessed the potential role of habitat density and traffic noise on birds' ability to solve these tasks. We found that likelihood of solving a novel feeder task was associated with mixed-species flock size and composition, though the specific social factor involved depended on the particular species and on the novel feeder. We did not find an influence of habitat density or background traffic noise on likelihood of solving novel feeder tasks. Overall, our results reveal the importance of variation in mixed-species group size and diversity on foraging success in these songbirds.


Subject(s)
Ecosystem , Animals , Songbirds/physiology , Feeding Behavior/physiology , Social Behavior , Species Specificity , Population Density , Behavior, Animal/physiology
12.
Biol Res ; 57(1): 23, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705984

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Subject(s)
Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
13.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709918

ABSTRACT

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Subject(s)
Anxiety , Arginine Vasopressin , Social Behavior , Animals , Female , Male , Mice , Anxiety/metabolism , Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Optogenetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Septal Nuclei/metabolism , Septal Nuclei/physiology
14.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38722696

ABSTRACT

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Subject(s)
Crustacea , Animals , Biomechanical Phenomena , Crustacea/physiology , Crustacea/anatomy & histology , Energy Metabolism , Predatory Behavior/physiology , Behavior, Animal/physiology , Video Recording
16.
Cell Genom ; 4(5): 100545, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697120

ABSTRACT

Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.


Subject(s)
Fear , Quantitative Trait Loci , Animals , Female , Male , Mice , Behavior, Animal/physiology , Chromosome Mapping , Fear/physiology , Mice, Inbred C57BL , Genetic Complementation Test
17.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
18.
Behav Brain Res ; 468: 115028, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38723677

ABSTRACT

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.


Subject(s)
Apoptosis Regulatory Proteins , Depression , Hippocampus , Mice, Inbred C57BL , Neuronal Plasticity , RNA-Binding Proteins , Stress, Psychological , Animals , Hippocampus/metabolism , Neuronal Plasticity/physiology , Stress, Psychological/metabolism , Mice , Depression/metabolism , Depression/physiopathology , Apoptosis Regulatory Proteins/metabolism , RNA-Binding Proteins/metabolism , Male , Disease Models, Animal , Microglia/metabolism , Lipopolysaccharides/pharmacology , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Disease Susceptibility , Animals, Newborn
19.
Behav Brain Res ; 468: 115042, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38723676

ABSTRACT

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.


Subject(s)
Hippocampus , Mice, Inbred C57BL , Neurogenesis , Animals , Neurogenesis/physiology , Male , Hippocampus/metabolism , Mice , Calcium/metabolism , Behavior, Animal/physiology , Recognition, Psychology/physiology , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Dependovirus , Genetic Vectors/administration & dosage , Functional Laterality/physiology
20.
Sci Rep ; 14(1): 11697, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777816

ABSTRACT

Allogrooming is a widespread, pervasive activity among non-human primates. Besides its hygienic function, it is thought to be instrumental in maintaining social bonds and establishing hierarchical structures within groups. However, the question arises as to whether the physiological and social benefits derived from social touch stem directly from body stimulation, or whether other mechanisms come into play. We address this question by analyzing an elaborate social behavior that we observed in two adult male macaques. This behavior demonstrates the existence of a persistent motivation to interact through a form of simulated grooming, as the animals were housed in adjacent enclosures separated by a glass panel preventing direct tactile contact. We find that such virtual grooming produces similar physiological sensations and social effects as allogrooming. We suggest that this behavior engages affective and reward brain circuits to the same extent as real social touch, and that this is probably achieved through high level processes similar to those involved in bodily illusions or synaesthetic phenomena previously described in humans. This observation reveals the unsuspected capacity of non-human primates to invent alternative, quasi-symbolic strategies to obtain effects similar to those provided by direct bodily interaction, which are so important for maintaining social bonds.


Subject(s)
Grooming , Social Behavior , Animals , Male , Grooming/physiology , Behavior, Animal/physiology , Touch/physiology , Macaca , Psychophysiology
SELECTION OF CITATIONS
SEARCH DETAIL
...